Abstract

A method to measure the optical response across the surface of a phase-only liquid crystal on silicon device using binary phase gratings is described together with a procedure to compensate its spatial optical phase variation. As a result, the residual power between zero and the minima of the first diffraction order for a binary grating can be reduced by more than 10 dB, from 15.98dB to 26.29dB. This phase compensation method is also shown to be useful in nonbinary cases. A reduction in the worst crosstalk by 5.32 dB can be achieved when quantized blazed gratings are used.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Crossland, P. J. Ayliffe, and P. W. Ross, “A dyed-phase-change liquid crystal display over a MOSFET switching array,” Proc. SID 23, 15–22 (1981).
  2. N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
    [CrossRef]
  3. I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
    [CrossRef]
  4. D. Armitage and D. K. Kinnell, “Miniature spatial light modulators,” Proc. SPIE 12, 158–165 (1990).
    [CrossRef]
  5. L. K. Cotter, T. J. Drabik, R. J. Dillon, and M. A. Handschy, “Ferroelectric liquid crystal silicon integrated circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990).
    [CrossRef]
  6. D. Armitage and D. K. Kinnell, “Liquid-crystal integrated silicon spatial light modulator,” Appl. Opt. 31, 3945–3949 (1992).
    [CrossRef]
  7. D. J. McKnight, K. M. Johnson, and R. A. Serati, “256×256 liquid crystal-on-silicon spatial light modulator,” Appl. Opt. 33, 2775–2784 (1994).
    [CrossRef]
  8. R. L. Melcher, M. Ohhata, and K. Enami, “High-information-content projection display based on reflective LC on silicon light valves,” SID Dig. 29, 25–28 (1998).
    [CrossRef]
  9. A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, and W. A. Crossland, “Liquid crystal over silicon device characteristics for holographic projection of high-definition television images,” Appl. Opt. 47, 4793–4803 (2008).
    [CrossRef]
  10. T. D. Wilkinson, C. D. Henderson, D. Gil Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16, 3359–3365 (2006).
    [CrossRef]
  11. M. L. Jepsen, “A technology rollercoaster liquid crystal on silicon,” Nat. Photon. 1, 276–277 (2007).
    [CrossRef]
  12. J. L. de Bougrenet de la Tocnaye and L. Dupont, “Complex amplitude modulation by use of liquid—crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997).
    [CrossRef]
  13. W. Crossland, I. Manolis, M. Redmond, K. Tan, T. Wilkinson, M. Holmes, T. Parker, H. Chu, J. Croucher, V. Handerek, S. Warr, B. Robertson, I. Bonas, R. Franklin, C. Stace, H. White, R. Woolley, and G. Henshall, “Holographic optical switching: the ROSES demonstrator,” J. Lightwave Technol. 18, 1845–1854 (2000).
    [CrossRef]
  14. N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Opt. Commun. 160, 42–46 (1999).
    [CrossRef]
  15. E. Buckley, “Holographic laser projection technology,” J. Disp. Technol. 7, 135 (2008).
  16. Boulder Nonlinear Systems, http://www.bnonlinear.com/products/index.html .
  17. Holoeye Photonics AG, http://www.holoeye.com/spatial_light_modulators-technology.html .
  18. Hamamatsu Corporation, http://sales.hamamatsu.com/en/products/solid-state-division/lcos-slm.php .
  19. Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011).
    [CrossRef]
  20. R. D. Hamer and C. W. Tyler, “Analysis of visual modulation sensitivity. V. Faster visual response for g- than for r-cone pathway?,” J. Opt. Soc. Am. A 9, 1889–1904 (1992).
    [CrossRef]
  21. A. Valberg, Light Vision Color (Wiley, 2005).
  22. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43, 6400–6406 (2004).
    [CrossRef]
  23. J. Oton, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667–5679(2007).
    [CrossRef]
  24. J. Goodman, Fourier Optics (Roberts, 2005).
  25. H. Dammann, “Spectral characteristic of stepped-phase gratings,” Optik 53, 409–417 (1979).
  26. E. Hallstig, “Nematic liquid crystal spatial light modulators for laser beam steering,” Ph.D. dissertation (Uppsala University, 2004).
  27. Z. Zhang, “Phase-only nematic liquid crystal on silicon devices,” Ph.D. dissertation (University of Cambridge, 2011).
  28. B. Robertson and M. Redmond, Polarimetry Measurement for PASSBACK Project (University of Cambridge, 2009).
  29. M. Redmond, Tops Project (University of Cambridge, 2009).
  30. L. Kim, S. T. Tan, T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redond, W. A. Crossland, and B. Robertson, “Dynamic holography for optical interconnections. II. Routing. holograms with predictable location and intensity of each diffraction order,” J. Opt. Soc. Am. A 18, 205–215 (2001).
    [CrossRef]
  31. D. Gil-Leyva, B. Robertson, C. J. Henderson, and T. D. Wilkinson, “Cross-talk analysis in a telecentric adaptive free-space optical relay based on a spatial light modulator,” Appl. Opt. 45, 63–75 (2006).
    [CrossRef]

2011 (1)

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011).
[CrossRef]

2008 (2)

2007 (2)

2006 (2)

T. D. Wilkinson, C. D. Henderson, D. Gil Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16, 3359–3365 (2006).
[CrossRef]

D. Gil-Leyva, B. Robertson, C. J. Henderson, and T. D. Wilkinson, “Cross-talk analysis in a telecentric adaptive free-space optical relay based on a spatial light modulator,” Appl. Opt. 45, 63–75 (2006).
[CrossRef]

2004 (1)

2001 (1)

2000 (1)

1999 (1)

N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Opt. Commun. 160, 42–46 (1999).
[CrossRef]

1998 (1)

R. L. Melcher, M. Ohhata, and K. Enami, “High-information-content projection display based on reflective LC on silicon light valves,” SID Dig. 29, 25–28 (1998).
[CrossRef]

1997 (1)

1994 (1)

1992 (3)

D. Armitage and D. K. Kinnell, “Liquid-crystal integrated silicon spatial light modulator,” Appl. Opt. 31, 3945–3949 (1992).
[CrossRef]

R. D. Hamer and C. W. Tyler, “Analysis of visual modulation sensitivity. V. Faster visual response for g- than for r-cone pathway?,” J. Opt. Soc. Am. A 9, 1889–1904 (1992).
[CrossRef]

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

1990 (2)

1989 (1)

1981 (1)

W. A. Crossland, P. J. Ayliffe, and P. W. Ross, “A dyed-phase-change liquid crystal display over a MOSFET switching array,” Proc. SID 23, 15–22 (1981).

1979 (1)

H. Dammann, “Spectral characteristic of stepped-phase gratings,” Optik 53, 409–417 (1979).

Al-Chalabi, A. O.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

Ambs, P.

Armitage, D.

D. Armitage and D. K. Kinnell, “Liquid-crystal integrated silicon spatial light modulator,” Appl. Opt. 31, 3945–3949 (1992).
[CrossRef]

D. Armitage and D. K. Kinnell, “Miniature spatial light modulators,” Proc. SPIE 12, 158–165 (1990).
[CrossRef]

Ayliffe, P. J.

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
[CrossRef]

W. A. Crossland, P. J. Ayliffe, and P. W. Ross, “A dyed-phase-change liquid crystal display over a MOSFET switching array,” Proc. SID 23, 15–22 (1981).

Birch, M. J.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

Bonas, I.

Bradford, G.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

Buckley, E.

E. Buckley, “Holographic laser projection technology,” J. Disp. Technol. 7, 135 (2008).

Christmas, J.

Chu, D. P.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011).
[CrossRef]

Chu, H.

Cohn, R. W.

Collings, N.

Cotter, L. K.

Crossland, B.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011).
[CrossRef]

Crossland, W.

Crossland, W. A.

A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, and W. A. Crossland, “Liquid crystal over silicon device characteristics for holographic projection of high-definition television images,” Appl. Opt. 47, 4793–4803 (2008).
[CrossRef]

T. D. Wilkinson, C. D. Henderson, D. Gil Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16, 3359–3365 (2006).
[CrossRef]

L. Kim, S. T. Tan, T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redond, W. A. Crossland, and B. Robertson, “Dynamic holography for optical interconnections. II. Routing. holograms with predictable location and intensity of each diffraction order,” J. Opt. Soc. Am. A 18, 205–215 (2001).
[CrossRef]

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
[CrossRef]

W. A. Crossland, P. J. Ayliffe, and P. W. Ross, “A dyed-phase-change liquid crystal display over a MOSFET switching array,” Proc. SID 23, 15–22 (1981).

Croucher, J.

Dammann, H.

H. Dammann, “Spectral characteristic of stepped-phase gratings,” Optik 53, 409–417 (1979).

Davey, A.

de Bougrenet de la Tocnaye, J. L.

Dillon, R. J.

Drabik, T. J.

Dupont, L.

Enami, K.

R. L. Melcher, M. Ohhata, and K. Enami, “High-information-content projection display based on reflective LC on silicon light valves,” SID Dig. 29, 25–28 (1998).
[CrossRef]

Fancey, N. E.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

Franklin, R.

Georgiou, A.

Gil Leyva, D.

T. D. Wilkinson, C. D. Henderson, D. Gil Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16, 3359–3365 (2006).
[CrossRef]

Gil-Leyva, D.

Goodman, J.

J. Goodman, Fourier Optics (Roberts, 2005).

Gravey, P.

N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Opt. Commun. 160, 42–46 (1999).
[CrossRef]

Hallstig, E.

E. Hallstig, “Nematic liquid crystal spatial light modulators for laser beam steering,” Ph.D. dissertation (Uppsala University, 2004).

Hamer, R. D.

Handerek, V.

Handschy, M. A.

Henderson, C. D.

T. D. Wilkinson, C. D. Henderson, D. Gil Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16, 3359–3365 (2006).
[CrossRef]

Henderson, C. J.

Henshall, G.

Holmes, M.

Jepsen, M. L.

M. L. Jepsen, “A technology rollercoaster liquid crystal on silicon,” Nat. Photon. 1, 276–277 (2007).
[CrossRef]

Jeziorska-Chapman, A.

Jeziorska-Chapman, A. M.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011).
[CrossRef]

Johnson, K. M.

Kim, L.

Kinnell, D. K.

D. Armitage and D. K. Kinnell, “Liquid-crystal integrated silicon spatial light modulator,” Appl. Opt. 31, 3945–3949 (1992).
[CrossRef]

D. Armitage and D. K. Kinnell, “Miniature spatial light modulators,” Proc. SPIE 12, 158–165 (1990).
[CrossRef]

Latham, S. C.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

Manolis, I.

Manolis, I. G.

McKnight, D. J.

Melcher, R. L.

R. L. Melcher, M. Ohhata, and K. Enami, “High-information-content projection display based on reflective LC on silicon light valves,” SID Dig. 29, 25–28 (1998).
[CrossRef]

Millán, M. S.

Milne, B.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011).
[CrossRef]

Moore, J.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011).
[CrossRef]

A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, and W. A. Crossland, “Liquid crystal over silicon device characteristics for holographic projection of high-definition television images,” Appl. Opt. 47, 4793–4803 (2008).
[CrossRef]

Ohhata, M.

R. L. Melcher, M. Ohhata, and K. Enami, “High-information-content projection display based on reflective LC on silicon light valves,” SID Dig. 29, 25–28 (1998).
[CrossRef]

Oton, J.

Parker, T.

Pérez-Cabré, E.

Pivnenko, M.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011).
[CrossRef]

Redmond, M.

Redond, M. M.

Robertson, B.

Ross, P. W.

W. A. Crossland, P. J. Ayliffe, and P. W. Ross, “A dyed-phase-change liquid crystal display over a MOSFET switching array,” Proc. SID 23, 15–22 (1981).

Serati, R. A.

Sillitto, R. M.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

Sparks, A. P.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

Stace, C.

Tan, K.

Tan, S. T.

Tyler, C. W.

Underwood, I.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
[CrossRef]

Valberg, A.

A. Valberg, Light Vision Color (Wiley, 2005).

Vass, D. G.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
[CrossRef]

Vinouze, B.

N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Opt. Commun. 160, 42–46 (1999).
[CrossRef]

Warr, S.

Warr, T.

White, H.

Wilkinson, T.

Wilkinson, T. D.

Wolffer, N.

N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Opt. Commun. 160, 42–46 (1999).
[CrossRef]

Woolley, R.

Xun, X.

Zhang, Z.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011).
[CrossRef]

Z. Zhang, “Phase-only nematic liquid crystal on silicon devices,” Ph.D. dissertation (University of Cambridge, 2011).

Appl. Opt. (8)

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
[CrossRef]

D. Armitage and D. K. Kinnell, “Liquid-crystal integrated silicon spatial light modulator,” Appl. Opt. 31, 3945–3949 (1992).
[CrossRef]

D. J. McKnight, K. M. Johnson, and R. A. Serati, “256×256 liquid crystal-on-silicon spatial light modulator,” Appl. Opt. 33, 2775–2784 (1994).
[CrossRef]

J. L. de Bougrenet de la Tocnaye and L. Dupont, “Complex amplitude modulation by use of liquid—crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997).
[CrossRef]

X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43, 6400–6406 (2004).
[CrossRef]

D. Gil-Leyva, B. Robertson, C. J. Henderson, and T. D. Wilkinson, “Cross-talk analysis in a telecentric adaptive free-space optical relay based on a spatial light modulator,” Appl. Opt. 45, 63–75 (2006).
[CrossRef]

J. Oton, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667–5679(2007).
[CrossRef]

A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, and W. A. Crossland, “Liquid crystal over silicon device characteristics for holographic projection of high-definition television images,” Appl. Opt. 47, 4793–4803 (2008).
[CrossRef]

J. Disp. Technol. (2)

E. Buckley, “Holographic laser projection technology,” J. Disp. Technol. 7, 135 (2008).

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

T. D. Wilkinson, C. D. Henderson, D. Gil Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16, 3359–3365 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nat. Photon. (1)

M. L. Jepsen, “A technology rollercoaster liquid crystal on silicon,” Nat. Photon. 1, 276–277 (2007).
[CrossRef]

Opt. Commun. (1)

N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Opt. Commun. 160, 42–46 (1999).
[CrossRef]

Opt. Lett. (1)

Optik (1)

H. Dammann, “Spectral characteristic of stepped-phase gratings,” Optik 53, 409–417 (1979).

Proc. SID (1)

W. A. Crossland, P. J. Ayliffe, and P. W. Ross, “A dyed-phase-change liquid crystal display over a MOSFET switching array,” Proc. SID 23, 15–22 (1981).

Proc. SPIE (2)

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992).
[CrossRef]

D. Armitage and D. K. Kinnell, “Miniature spatial light modulators,” Proc. SPIE 12, 158–165 (1990).
[CrossRef]

SID Dig. (1)

R. L. Melcher, M. Ohhata, and K. Enami, “High-information-content projection display based on reflective LC on silicon light valves,” SID Dig. 29, 25–28 (1998).
[CrossRef]

Other (9)

Boulder Nonlinear Systems, http://www.bnonlinear.com/products/index.html .

Holoeye Photonics AG, http://www.holoeye.com/spatial_light_modulators-technology.html .

Hamamatsu Corporation, http://sales.hamamatsu.com/en/products/solid-state-division/lcos-slm.php .

E. Hallstig, “Nematic liquid crystal spatial light modulators for laser beam steering,” Ph.D. dissertation (Uppsala University, 2004).

Z. Zhang, “Phase-only nematic liquid crystal on silicon devices,” Ph.D. dissertation (University of Cambridge, 2011).

B. Robertson and M. Redmond, Polarimetry Measurement for PASSBACK Project (University of Cambridge, 2009).

M. Redmond, Tops Project (University of Cambridge, 2009).

A. Valberg, Light Vision Color (Wiley, 2005).

J. Goodman, Fourier Optics (Roberts, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Schematic of the diffraction based test-rig for the optical measurements in this work, where SMF is single-mode fiber, I is the polarizer, BS is the beam splitter, PDR is the reference photodiode, Lens I to Lens IV are the lenses, SLM LCOS is based on a spatial light modulator, PDM is the measurement photodiode, and AA is the adjustable aperture.

Fig. 2.
Fig. 2.

Relay lens system and its displacement for beam scanning across the SLM device, where f1 and f2 are the focal lengths of the Lens I and Lens II and h1 and h2 are the corresponding beam movements, respectively. Because h1/f1 = h2/f2, then h = h1(1+f2/f1).

Fig. 3.
Fig. 3.

Typical experimental power response of +1st diffraction order using a binary grating as a function of the applied voltage, i.e., gray levels.

Fig. 4.
Fig. 4.

Total summation of the unfolded phase modulation in terms of the applied voltages, i.e., gray levels.

Fig. 5.
Fig. 5.

Comparison of the phase responses calculated from the measured power response data for test phase-only LCOS device using the diffraction method and polarimetry method. The crosses represent the phase data using binary grating, taken at 674 nm. The circles represent the polarimetry data taken at 509 nm [29], which are scaled to 674 nm. The solid line is an empirical fit to the polarimetry data. The grating period is 20 pixels. Vmin=0.4V, Vmax=6.6V, Vth=0.91V.

Fig. 6.
Fig. 6.

Images of the test LCOS device through cross polarizers as observed by a microscope under a white light illumination, (a) before and (b) after the phase compensation is applied.

Fig. 7.
Fig. 7.

Arrangement of selected measurement points (yellow) in the target area (blue square) for phase compensation. The large blue circle denotes the optical beam when the target area is set with phase patterns for applications.

Fig. 8.
Fig. 8.

Optical power response of a binary grating on first diffraction order from test area 1 and area 12 as a function of the amplitude of the applied voltages, i.e., gray levels.

Fig. 9.
Fig. 9.

Cumulative phase modulation depths calculated from the optical power responses measured in test areas 1 and 12, respectively, as a function of the applied voltages, i.e., gray levels.

Fig. 10.
Fig. 10.

Fitted cumulative phase modulation depths for test areas 1 and 12 using the experimental data in Fig. 9.

Fig. 11.
Fig. 11.

Generated phase compensation LUT for the target area. Each layer represents the gray levels needed for each pixel to reach a given phase.

Fig. 12.
Fig. 12.

Schematic on how to generate a compensated phase grating using the phase compensation LUT in the targeted area obtained previously.

Fig. 13.
Fig. 13.

Optical power response of a phase compensated binary grating on the first diffraction order for the whole device area.

Fig. 14.
Fig. 14.

Schematic of a beam steering switch based on a blazed grating and a 2f optical switch geometry. A phase-only LCOS device displays a blazed grating, and the optical design makes the output array plane F1 and focal plane Q2 coincide.

Fig. 15.
Fig. 15.

Diffraction efficiency of a blazed grating of period 22.47 pixels with and without phase compensation. Position 1 is for the input beam.

Tables (2)

Tables Icon

Table 1. Diffracted Optical Power of a Blazed Grating as a Function of the Perioda

Tables Icon

Table 2. Crosstalk Powers (dB) Measured Across 10 Output Positionsa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

δtotal=2π(2d)Δnλ,
Pm=sinc2(m2N)sinc2(mδ(V)/2π)sinc2(mδ(V)/2π2N),
P0(δ(V))=Pmaxcos2(δ(V)2),
P±1(δ(V))=Pmax4π2sin2(δ(V)2).
δ(V)=πd2π(nen0)(ne2n02+nen0)(V2Vth223V2+K3K1k1Vth2),
δ(V)=sin1π2P±1(V)Pmax.
V=Vmin+VmaxVmingmax×g,
I(x,y)=I0e2(x2+y2)wf2,
win=f0λπwf.
ωSLM=f2f1ωin.

Metrics