Abstract

A unique approach with a hybrid master oscillator power amplifier configuration to obtain single-frequency, high-energy laser pulses at 1064 nm is presented. The setup consists of a single-frequency seed laser, a multistage fiber amplifier, and a four-pass crystal rod amplifier. Pulse energy of 10 mJ is obtained at the repetition rate of 100 Hz. The pulse width is about 110 ns with a transform-limited linewidth of 3.2 MHz. The M2 factor of the output beam is about 1.5. To our knowledge, this is the first report of using a hybrid amplifier to obtain 10 mJ pulses with long pulse width and transform-limited linewidth.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
    [CrossRef]
  2. J. Wang, R. Zhu, J. Zhou, H. Zang, X. Zhu, and W. Chen, “Conductively cooled 1 kHz single frequency Nd:YAG laser for remote sensing,” Chin. Opt. Lett. 9, 081405 (2011).
    [CrossRef]
  3. F. E. Hovis, J. Edelman, T. Schum, J. Rudd, and K. Andes, “Recent progress on single frequency lasers for space and high altitude aircraft applications,” Proc. SPIE 6871, 68710E (2008).
    [CrossRef]
  4. K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
    [CrossRef]
  5. J. Wang, V. Leyva, and F. E. Hovis, “Development and testing of a risk reduction high energy laser transmitter for high spectral resolution lidar and doppler winds lidar,” Proc. SPIE 6681, 668107 (2007).
    [CrossRef]
  6. T. Schroeder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wuehrer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B Lasers Opt. 87, 437–444 (2007).
    [CrossRef]
  7. C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
    [CrossRef]
  8. M. Akbulut, J. Hwang, F. Kimpel, S. Gupta, and H. Verdun, “Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection,” Proc. SPIE 8037, 80370R (2011).
    [CrossRef]
  9. W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
    [CrossRef]
  10. R. Zhu, J. Zhou, J. Liu, D. Chen, Y. Yang, and W. Chen, “Solid state tunable single-frequency laser based on non-planar ring oscillator,” Chin. J. Lasers 38, 1102011 (2011).
    [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  12. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000).
    [CrossRef]
  13. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  14. I. D. Carr and D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B Lasers Opt. 36, 83–92 (1985).
    [CrossRef]
  15. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346 (1963).
    [CrossRef]
  16. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
    [CrossRef]

2011

M. Akbulut, J. Hwang, F. Kimpel, S. Gupta, and H. Verdun, “Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection,” Proc. SPIE 8037, 80370R (2011).
[CrossRef]

W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
[CrossRef]

R. Zhu, J. Zhou, J. Liu, D. Chen, Y. Yang, and W. Chen, “Solid state tunable single-frequency laser based on non-planar ring oscillator,” Chin. J. Lasers 38, 1102011 (2011).
[CrossRef]

J. Wang, R. Zhu, J. Zhou, H. Zang, X. Zhu, and W. Chen, “Conductively cooled 1 kHz single frequency Nd:YAG laser for remote sensing,” Chin. Opt. Lett. 9, 081405 (2011).
[CrossRef]

2009

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

2008

F. E. Hovis, J. Edelman, T. Schum, J. Rudd, and K. Andes, “Recent progress on single frequency lasers for space and high altitude aircraft applications,” Proc. SPIE 6871, 68710E (2008).
[CrossRef]

2007

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

J. Wang, V. Leyva, and F. E. Hovis, “Development and testing of a risk reduction high energy laser transmitter for high spectral resolution lidar and doppler winds lidar,” Proc. SPIE 6681, 668107 (2007).
[CrossRef]

T. Schroeder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wuehrer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B Lasers Opt. 87, 437–444 (2007).
[CrossRef]

2000

1985

I. D. Carr and D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B Lasers Opt. 36, 83–92 (1985).
[CrossRef]

1980

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

1963

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Akbulut, M.

M. Akbulut, J. Hwang, F. Kimpel, S. Gupta, and H. Verdun, “Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection,” Proc. SPIE 8037, 80370R (2011).
[CrossRef]

Andes, K.

F. E. Hovis, J. Edelman, T. Schum, J. Rudd, and K. Andes, “Recent progress on single frequency lasers for space and high altitude aircraft applications,” Proc. SPIE 6871, 68710E (2008).
[CrossRef]

Carlson, C. G.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Carr, I. D.

I. D. Carr and D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B Lasers Opt. 36, 83–92 (1985).
[CrossRef]

Chaloupy, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

Chen, D.

R. Zhu, J. Zhou, J. Liu, D. Chen, Y. Yang, and W. Chen, “Solid state tunable single-frequency laser based on non-planar ring oscillator,” Chin. J. Lasers 38, 1102011 (2011).
[CrossRef]

Chen, W.

R. Zhu, J. Zhou, J. Liu, D. Chen, Y. Yang, and W. Chen, “Solid state tunable single-frequency laser based on non-planar ring oscillator,” Chin. J. Lasers 38, 1102011 (2011).
[CrossRef]

J. Wang, R. Zhu, J. Zhou, H. Zang, X. Zhu, and W. Chen, “Conductively cooled 1 kHz single frequency Nd:YAG laser for remote sensing,” Chin. Opt. Lett. 9, 081405 (2011).
[CrossRef]

Coleman, J. J.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Dragic, P. D.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Durand, Y.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

Edelman, J.

F. E. Hovis, J. Edelman, T. Schum, J. Rudd, and K. Andes, “Recent progress on single frequency lasers for space and high altitude aircraft applications,” Proc. SPIE 6871, 68710E (2008).
[CrossRef]

Endemann, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

Fabre, F.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Goldberg, L.

Gupta, S.

M. Akbulut, J. Hwang, F. Kimpel, S. Gupta, and H. Verdun, “Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection,” Proc. SPIE 8037, 80370R (2011).
[CrossRef]

Hanna, D. C.

I. D. Carr and D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B Lasers Opt. 36, 83–92 (1985).
[CrossRef]

Hoefer, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Hoffmann, D.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Hoffner, J.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Hovis, F. E.

F. E. Hovis, J. Edelman, T. Schum, J. Rudd, and K. Andes, “Recent progress on single frequency lasers for space and high altitude aircraft applications,” Proc. SPIE 6871, 68710E (2008).
[CrossRef]

J. Wang, V. Leyva, and F. E. Hovis, “Development and testing of a risk reduction high energy laser transmitter for high spectral resolution lidar and doppler winds lidar,” Proc. SPIE 6681, 668107 (2007).
[CrossRef]

Hwang, J.

M. Akbulut, J. Hwang, F. Kimpel, S. Gupta, and H. Verdun, “Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection,” Proc. SPIE 8037, 80370R (2011).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

Kimpel, F.

M. Akbulut, J. Hwang, F. Kimpel, S. Gupta, and H. Verdun, “Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection,” Proc. SPIE 8037, 80370R (2011).
[CrossRef]

Kliner, D. A. V.

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer, 2006).

Koplow, J. P.

Lemmerz, C.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

T. Schroeder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wuehrer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B Lasers Opt. 87, 437–444 (2007).
[CrossRef]

Leyva, V.

J. Wang, V. Leyva, and F. E. Hovis, “Development and testing of a risk reduction high energy laser transmitter for high spectral resolution lidar and doppler winds lidar,” Proc. SPIE 6681, 668107 (2007).
[CrossRef]

Liu, J.

R. Zhu, J. Zhou, J. Liu, D. Chen, Y. Yang, and W. Chen, “Solid state tunable single-frequency laser based on non-planar ring oscillator,” Chin. J. Lasers 38, 1102011 (2011).
[CrossRef]

Luttmann, J.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Moor, N.

W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
[CrossRef]

Morasch, V.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

Nguyen, D. T.

W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
[CrossRef]

Nicklaus, K.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

Ostermeyer, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Paffrath, U.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

Petersen, E. B.

W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
[CrossRef]

Peyghambarian, N.

W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
[CrossRef]

Pirson, A. C.

W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
[CrossRef]

Price, R. K.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Reitebuch, O.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

T. Schroeder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wuehrer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B Lasers Opt. 87, 437–444 (2007).
[CrossRef]

Rudd, J.

F. E. Hovis, J. Edelman, T. Schum, J. Rudd, and K. Andes, “Recent progress on single frequency lasers for space and high altitude aircraft applications,” Proc. SPIE 6871, 68710E (2008).
[CrossRef]

Schroeder, T.

T. Schroeder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wuehrer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B Lasers Opt. 87, 437–444 (2007).
[CrossRef]

Schum, T.

F. E. Hovis, J. Edelman, T. Schum, J. Rudd, and K. Andes, “Recent progress on single frequency lasers for space and high altitude aircraft applications,” Proc. SPIE 6871, 68710E (2008).
[CrossRef]

Shi, W.

W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
[CrossRef]

Stephen, M. A.

W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
[CrossRef]

Swenson, G. R.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Treichel, R.

T. Schroeder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wuehrer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B Lasers Opt. 87, 437–444 (2007).
[CrossRef]

Verdun, H.

M. Akbulut, J. Hwang, F. Kimpel, S. Gupta, and H. Verdun, “Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection,” Proc. SPIE 8037, 80370R (2011).
[CrossRef]

Vierkotter, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Wang, J.

J. Wang, R. Zhu, J. Zhou, H. Zang, X. Zhu, and W. Chen, “Conductively cooled 1 kHz single frequency Nd:YAG laser for remote sensing,” Chin. Opt. Lett. 9, 081405 (2011).
[CrossRef]

J. Wang, V. Leyva, and F. E. Hovis, “Development and testing of a risk reduction high energy laser transmitter for high spectral resolution lidar and doppler winds lidar,” Proc. SPIE 6681, 668107 (2007).
[CrossRef]

Wirth, M.

T. Schroeder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wuehrer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B Lasers Opt. 87, 437–444 (2007).
[CrossRef]

Wuehrer, C.

T. Schroeder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wuehrer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B Lasers Opt. 87, 437–444 (2007).
[CrossRef]

Yang, Y.

R. Zhu, J. Zhou, J. Liu, D. Chen, Y. Yang, and W. Chen, “Solid state tunable single-frequency laser based on non-planar ring oscillator,” Chin. J. Lasers 38, 1102011 (2011).
[CrossRef]

Yao, Z.

W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
[CrossRef]

Zang, H.

Zhou, J.

J. Wang, R. Zhu, J. Zhou, H. Zang, X. Zhu, and W. Chen, “Conductively cooled 1 kHz single frequency Nd:YAG laser for remote sensing,” Chin. Opt. Lett. 9, 081405 (2011).
[CrossRef]

R. Zhu, J. Zhou, J. Liu, D. Chen, Y. Yang, and W. Chen, “Solid state tunable single-frequency laser based on non-planar ring oscillator,” Chin. J. Lasers 38, 1102011 (2011).
[CrossRef]

Zhu, R.

R. Zhu, J. Zhou, J. Liu, D. Chen, Y. Yang, and W. Chen, “Solid state tunable single-frequency laser based on non-planar ring oscillator,” Chin. J. Lasers 38, 1102011 (2011).
[CrossRef]

J. Wang, R. Zhu, J. Zhou, H. Zang, X. Zhu, and W. Chen, “Conductively cooled 1 kHz single frequency Nd:YAG laser for remote sensing,” Chin. Opt. Lett. 9, 081405 (2011).
[CrossRef]

Zhu, X.

Appl. Phys. B Lasers Opt.

T. Schroeder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wuehrer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B Lasers Opt. 87, 437–444 (2007).
[CrossRef]

I. D. Carr and D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B Lasers Opt. 36, 83–92 (1985).
[CrossRef]

Chin. J. Lasers

R. Zhu, J. Zhou, J. Liu, D. Chen, Y. Yang, and W. Chen, “Solid state tunable single-frequency laser based on non-planar ring oscillator,” Chin. J. Lasers 38, 1102011 (2011).
[CrossRef]

Chin. Opt. Lett.

Electron. Lett.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

J. Appl. Phys.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

J. Atmos. Ocean. Technol.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus,” J. Atmos. Ocean. Technol. 26, 2501 (2009).
[CrossRef]

Opt. Lett.

Proc. SPIE

M. Akbulut, J. Hwang, F. Kimpel, S. Gupta, and H. Verdun, “Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection,” Proc. SPIE 8037, 80370R (2011).
[CrossRef]

W. Shi, N. Moor, E. B. Petersen, D. T. Nguyen, Z. Yao, M. A. Stephen, A. C. Pirson, and N. Peyghambarian, “High energy pulsed fiber laser transmitters in the C and L band for coherent LIDAR applications,” Proc. SPIE 8286, 828602 (2011).
[CrossRef]

F. E. Hovis, J. Edelman, T. Schum, J. Rudd, and K. Andes, “Recent progress on single frequency lasers for space and high altitude aircraft applications,” Proc. SPIE 6871, 68710E (2008).
[CrossRef]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

J. Wang, V. Leyva, and F. E. Hovis, “Development and testing of a risk reduction high energy laser transmitter for high spectral resolution lidar and doppler winds lidar,” Proc. SPIE 6681, 668107 (2007).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

W. Koechner, Solid State Laser Engineering (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of the fiber amplifier. AOM, acousto-optic modulator; WDM, wavelength division multiplexer; YDF, Yb-doped fiber; MFA, mode field adapter.

Fig. 2.
Fig. 2.

Temporal pulse shape of the amplified laser after the fiber amplifier with the modulated seed laser shown in the insert.

Fig. 3.
Fig. 3.

(a) Image of the pulsed fiber amplifier profile displayed in 2D views; (b) beam quality evaluation by measuring M2 values in two orthogonal directions.

Fig. 4.
Fig. 4.

Schematic diagram of the crystal rod amplifier. HW, half-wave plate; PBS, polarization beam splitter; FR, Faraday rotator; HR, high reflector.

Fig. 5.
Fig. 5.

Amplified laser pulse energy versus incident pump power of the crystal rod amplifier.

Fig. 6.
Fig. 6.

Temporal pulse shape of the amplified laser with pulse energy of (a) 1 mJ; (b) 5 mJ; and (c) 10 mJ; and (d) pulse train for the amplified pulses with 10 ms interval.

Fig. 7.
Fig. 7.

FFT spectrum of the heterodyne beat signal with Lorentz fitting.

Fig. 8.
Fig. 8.

(a) Image of the pulsed laser profile displayed in 2D views with 10 mJ per pulse; (b) beam quality evaluation by measuring M2 values in two orthogonal directions.

Fig. 9.
Fig. 9.

Amplified laser pulse energy versus incident pump energy with different pulse repetition rate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PSBS21AeffK·gBLeff,

Metrics