Abstract

This paper presented the fabrication and calibration of a clad-modified evanescent based plastic optical fiber (POF) sensor for the detection of ammonia in both stagnant and dynamic aqueous media. This optochemical sensor was based on Oxazine 170 perchlorate (sensing material) and polydimethylsiloxane (PDMS) (protective material) thin layers. A special chemical solution was developed for the etching removal of cladding and a methodology for trapping moisture was exercised. Experimental results on dissolved ammonia detection exhibited short response time (10 s), low detection limit (minimum detection limit 1.4 ppm), high sensitivity, and excellent reversibility (over 99%).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Oram, “Nitrogen-ammonia in water” (Wilkes University Center for Environmental Quality Environmental Engineering and Earth Sciences, 1999).
  2. S. W. Gay and K. F. Knowlton, “Ammonia emissions and animal agriculture,” Virginia Cooperative Extension Publication 442-110 (2009).
  3. M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “Ammonia detection in water with a tin dioxide based optical sensor,” in Sensors and Microsystems (World Science, 2005), pp. 341–345.
  4. D. Pletcher, J. Evans, P. R. Warburton, and T. K. Gibbs, “Acidic gas sensors and method of using the same,” U.S. patent 5,071,526 (10 December 1991).
  5. Y. Chao, W. J. Buttner, K. Gupta, and J. R. Stetter, “Hydrogen amperometric gas sensor: performance evaluation by SSTUF,” in Chemical Sensors VI: Chemical and Biological Sensors and Analytical Systems (2004).
  6. C. S. Polster and C. D. Baertsch, “Fuel cells (application of CuOx-CeO2 catalysts as sensor substrates for catalytic detection of CO in H2 fuel),” in AIChE 2008 Annual Meeting (American Institute of Chemical Engineers, 2008).
  7. K. Marcinkowska, M. P. Mcgauley, and E. A. Symons, “A new carbon monoxide sensor based on a hydrophobic CO oxidation catalyst,” Sens. Actuators B 5, 91–96 (1991).
    [CrossRef]
  8. C. K. Ho and C. F. Lohrstorfer, “In situ monitoring of vapor phase TCE using a chemiresistor microchemical sensor,” Ground Water Monit. Remediat. 23, 85–90 (2003).
    [CrossRef]
  9. T. V. Krishna, J. R. Jessing, D. D. Russell, J. Scaggs, L. R. Warner, and J. A. Hartman, “Modeling and design of polythiophene gate electrode ChemFETs for environmental pollutant sensing,” in Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (IEEE, 2003), pp. 271–274.
  10. A. Airoudj, D. Debarnot, B. Beche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76, 314–319 (2008).
    [CrossRef]
  11. Z. Jin, Y. Su, and Y. Duan, “Development of a polyaniline-based optical ammonia sensor,” Sens. Actuators B 72, 75–79 (2001).
    [CrossRef]
  12. S. Tao, L. Xu, and J. C. Fanguy, “Optical Fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sens. Actuators B 115, 158–163 (2006).
    [CrossRef]
  13. S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724–731 (2007).
    [CrossRef]
  14. A. Yimit, K. Itoh, and M. Murabayashi, “Detection of ammonia in the ppt range based on composite optical waveguide pH sensor,” Sens. Actuators B 88, 239–245 (2003).
    [CrossRef]
  15. S. S. Shastry, A. M. Abdi, and A. G. A. Nnanna, “Investigation of fiber optic sensor for monitoring of ammonia,” in ASME Conference Proceedings, Vol. 6: Electronics and Photonics (2008), pp. 55–59.
  16. J. Yuan and M. A. El-Sherif, “Fiber-optic chemical sensor using polyaniline as modified cladding material,” IEEE Sens. J. 3, 5–12 (2003).
    [CrossRef]
  17. J. F. Giuliani, H. Wohltjen, and N. L. Jarvis, “Reversible optical waveguide sensor for ammonia vapors,” Opt. Lett. 8, 54–56 (1983).
    [CrossRef]
  18. W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sens. Actuators B 110, 252–259 (2005).
    [CrossRef]
  19. G. Absalan, M. Soleimani, M. Asadi, and M. B. Ahmadi, “Constructing a new optical sensor for monitoring ammonia in water samples using bis(acetylacetoneethylendiamine)-tributylphosphin cobalt(III) tetraphenylborate complex-coated triacetylcellulose,” Anal. Sci. 20, 1433–1436 (2004).
    [CrossRef]
  20. S. Tao, “Optical fiber chemical sensor with sol-gel derive refractive material as transducer for high temperature gas sensing in clean coal technology,” Final scientific/technical report, Project ID number DE-FC26-04NT42230 (Institute for Clean Energy Technology, Mississippi State University, 2006).
  21. F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
    [CrossRef]
  22. J. Moreno, F. J. Arregui, and I. R. Matias, “Fiber optic ammonia sensing employing novel thermoplastic polyurethane membranes,” Sens. Actuators B 105, 419–424(2005).
    [CrossRef]
  23. C. Saunders and P. J. Scully, “Distribution of plastic optical fiber measurement of pH using a photon counting OTDR,” J. Phys. Conf. Ser. 15, 61–66 (2005).
    [CrossRef]
  24. D. F. Merchant, P. J. Scully, and N. F. Schmitt, “Chemical tapering of polymer optical fibre,” Sens. Actuators A 76, 365–371 (1999).
    [CrossRef]

2009

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

2008

A. Airoudj, D. Debarnot, B. Beche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76, 314–319 (2008).
[CrossRef]

2007

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724–731 (2007).
[CrossRef]

2006

S. Tao, L. Xu, and J. C. Fanguy, “Optical Fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sens. Actuators B 115, 158–163 (2006).
[CrossRef]

2005

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sens. Actuators B 110, 252–259 (2005).
[CrossRef]

J. Moreno, F. J. Arregui, and I. R. Matias, “Fiber optic ammonia sensing employing novel thermoplastic polyurethane membranes,” Sens. Actuators B 105, 419–424(2005).
[CrossRef]

C. Saunders and P. J. Scully, “Distribution of plastic optical fiber measurement of pH using a photon counting OTDR,” J. Phys. Conf. Ser. 15, 61–66 (2005).
[CrossRef]

2004

G. Absalan, M. Soleimani, M. Asadi, and M. B. Ahmadi, “Constructing a new optical sensor for monitoring ammonia in water samples using bis(acetylacetoneethylendiamine)-tributylphosphin cobalt(III) tetraphenylborate complex-coated triacetylcellulose,” Anal. Sci. 20, 1433–1436 (2004).
[CrossRef]

2003

A. Yimit, K. Itoh, and M. Murabayashi, “Detection of ammonia in the ppt range based on composite optical waveguide pH sensor,” Sens. Actuators B 88, 239–245 (2003).
[CrossRef]

J. Yuan and M. A. El-Sherif, “Fiber-optic chemical sensor using polyaniline as modified cladding material,” IEEE Sens. J. 3, 5–12 (2003).
[CrossRef]

C. K. Ho and C. F. Lohrstorfer, “In situ monitoring of vapor phase TCE using a chemiresistor microchemical sensor,” Ground Water Monit. Remediat. 23, 85–90 (2003).
[CrossRef]

2001

Z. Jin, Y. Su, and Y. Duan, “Development of a polyaniline-based optical ammonia sensor,” Sens. Actuators B 72, 75–79 (2001).
[CrossRef]

1999

D. F. Merchant, P. J. Scully, and N. F. Schmitt, “Chemical tapering of polymer optical fibre,” Sens. Actuators A 76, 365–371 (1999).
[CrossRef]

1991

K. Marcinkowska, M. P. Mcgauley, and E. A. Symons, “A new carbon monoxide sensor based on a hydrophobic CO oxidation catalyst,” Sens. Actuators B 5, 91–96 (1991).
[CrossRef]

1983

Abdi, A. M.

S. S. Shastry, A. M. Abdi, and A. G. A. Nnanna, “Investigation of fiber optic sensor for monitoring of ammonia,” in ASME Conference Proceedings, Vol. 6: Electronics and Photonics (2008), pp. 55–59.

Absalan, G.

G. Absalan, M. Soleimani, M. Asadi, and M. B. Ahmadi, “Constructing a new optical sensor for monitoring ammonia in water samples using bis(acetylacetoneethylendiamine)-tributylphosphin cobalt(III) tetraphenylborate complex-coated triacetylcellulose,” Anal. Sci. 20, 1433–1436 (2004).
[CrossRef]

Ahmadi, M. B.

G. Absalan, M. Soleimani, M. Asadi, and M. B. Ahmadi, “Constructing a new optical sensor for monitoring ammonia in water samples using bis(acetylacetoneethylendiamine)-tributylphosphin cobalt(III) tetraphenylborate complex-coated triacetylcellulose,” Anal. Sci. 20, 1433–1436 (2004).
[CrossRef]

Airoudj, A.

A. Airoudj, D. Debarnot, B. Beche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76, 314–319 (2008).
[CrossRef]

Arregui, F. J.

J. Moreno, F. J. Arregui, and I. R. Matias, “Fiber optic ammonia sensing employing novel thermoplastic polyurethane membranes,” Sens. Actuators B 105, 419–424(2005).
[CrossRef]

Asadi, M.

G. Absalan, M. Soleimani, M. Asadi, and M. B. Ahmadi, “Constructing a new optical sensor for monitoring ammonia in water samples using bis(acetylacetoneethylendiamine)-tributylphosphin cobalt(III) tetraphenylborate complex-coated triacetylcellulose,” Anal. Sci. 20, 1433–1436 (2004).
[CrossRef]

Baertsch, C. D.

C. S. Polster and C. D. Baertsch, “Fuel cells (application of CuOx-CeO2 catalysts as sensor substrates for catalytic detection of CO in H2 fuel),” in AIChE 2008 Annual Meeting (American Institute of Chemical Engineers, 2008).

Barian, C.

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

Beche, B.

A. Airoudj, D. Debarnot, B. Beche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76, 314–319 (2008).
[CrossRef]

Buttner, W. J.

Y. Chao, W. J. Buttner, K. Gupta, and J. R. Stetter, “Hydrogen amperometric gas sensor: performance evaluation by SSTUF,” in Chemical Sensors VI: Chemical and Biological Sensors and Analytical Systems (2004).

Campopiano, S.

M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “Ammonia detection in water with a tin dioxide based optical sensor,” in Sensors and Microsystems (World Science, 2005), pp. 341–345.

Cao, W.

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sens. Actuators B 110, 252–259 (2005).
[CrossRef]

Chao, Y.

Y. Chao, W. J. Buttner, K. Gupta, and J. R. Stetter, “Hydrogen amperometric gas sensor: performance evaluation by SSTUF,” in Chemical Sensors VI: Chemical and Biological Sensors and Analytical Systems (2004).

Consales, M.

M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “Ammonia detection in water with a tin dioxide based optical sensor,” in Sensors and Microsystems (World Science, 2005), pp. 341–345.

Cusano, A.

M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “Ammonia detection in water with a tin dioxide based optical sensor,” in Sensors and Microsystems (World Science, 2005), pp. 341–345.

Cutolo, A.

M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “Ammonia detection in water with a tin dioxide based optical sensor,” in Sensors and Microsystems (World Science, 2005), pp. 341–345.

Debarnot, D.

A. Airoudj, D. Debarnot, B. Beche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76, 314–319 (2008).
[CrossRef]

Duan, Y.

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sens. Actuators B 110, 252–259 (2005).
[CrossRef]

Z. Jin, Y. Su, and Y. Duan, “Development of a polyaniline-based optical ammonia sensor,” Sens. Actuators B 72, 75–79 (2001).
[CrossRef]

Elosua, C.

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

El-Sherif, M. A.

J. Yuan and M. A. El-Sherif, “Fiber-optic chemical sensor using polyaniline as modified cladding material,” IEEE Sens. J. 3, 5–12 (2003).
[CrossRef]

Evans, J.

D. Pletcher, J. Evans, P. R. Warburton, and T. K. Gibbs, “Acidic gas sensors and method of using the same,” U.S. patent 5,071,526 (10 December 1991).

Fanguy, J. C.

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724–731 (2007).
[CrossRef]

S. Tao, L. Xu, and J. C. Fanguy, “Optical Fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sens. Actuators B 115, 158–163 (2006).
[CrossRef]

Gay, S. W.

S. W. Gay and K. F. Knowlton, “Ammonia emissions and animal agriculture,” Virginia Cooperative Extension Publication 442-110 (2009).

Gibbs, T. K.

D. Pletcher, J. Evans, P. R. Warburton, and T. K. Gibbs, “Acidic gas sensors and method of using the same,” U.S. patent 5,071,526 (10 December 1991).

Giordano, M.

M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “Ammonia detection in water with a tin dioxide based optical sensor,” in Sensors and Microsystems (World Science, 2005), pp. 341–345.

Giuliani, J. F.

Gong, S.

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724–731 (2007).
[CrossRef]

Grattan, K. T. V.

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

Gupta, K.

Y. Chao, W. J. Buttner, K. Gupta, and J. R. Stetter, “Hydrogen amperometric gas sensor: performance evaluation by SSTUF,” in Chemical Sensors VI: Chemical and Biological Sensors and Analytical Systems (2004).

Harnaez, M.

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

Hartman, J. A.

T. V. Krishna, J. R. Jessing, D. D. Russell, J. Scaggs, L. R. Warner, and J. A. Hartman, “Modeling and design of polythiophene gate electrode ChemFETs for environmental pollutant sensing,” in Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (IEEE, 2003), pp. 271–274.

Ho, C. K.

C. K. Ho and C. F. Lohrstorfer, “In situ monitoring of vapor phase TCE using a chemiresistor microchemical sensor,” Ground Water Monit. Remediat. 23, 85–90 (2003).
[CrossRef]

Hu, X.

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724–731 (2007).
[CrossRef]

Itoh, K.

A. Yimit, K. Itoh, and M. Murabayashi, “Detection of ammonia in the ppt range based on composite optical waveguide pH sensor,” Sens. Actuators B 88, 239–245 (2003).
[CrossRef]

Jarvis, N. L.

Jessing, J. R.

T. V. Krishna, J. R. Jessing, D. D. Russell, J. Scaggs, L. R. Warner, and J. A. Hartman, “Modeling and design of polythiophene gate electrode ChemFETs for environmental pollutant sensing,” in Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (IEEE, 2003), pp. 271–274.

Jin, Z.

Z. Jin, Y. Su, and Y. Duan, “Development of a polyaniline-based optical ammonia sensor,” Sens. Actuators B 72, 75–79 (2001).
[CrossRef]

Keeffe, S. O.

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

Knowlton, K. F.

S. W. Gay and K. F. Knowlton, “Ammonia emissions and animal agriculture,” Virginia Cooperative Extension Publication 442-110 (2009).

Krishna, T. V.

T. V. Krishna, J. R. Jessing, D. D. Russell, J. Scaggs, L. R. Warner, and J. A. Hartman, “Modeling and design of polythiophene gate electrode ChemFETs for environmental pollutant sensing,” in Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (IEEE, 2003), pp. 271–274.

Lewis, E.

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

Lohrstorfer, C. F.

C. K. Ho and C. F. Lohrstorfer, “In situ monitoring of vapor phase TCE using a chemiresistor microchemical sensor,” Ground Water Monit. Remediat. 23, 85–90 (2003).
[CrossRef]

Lyons, W. B.

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

Marcinkowska, K.

K. Marcinkowska, M. P. Mcgauley, and E. A. Symons, “A new carbon monoxide sensor based on a hydrophobic CO oxidation catalyst,” Sens. Actuators B 5, 91–96 (1991).
[CrossRef]

Matias, I. R.

J. Moreno, F. J. Arregui, and I. R. Matias, “Fiber optic ammonia sensing employing novel thermoplastic polyurethane membranes,” Sens. Actuators B 105, 419–424(2005).
[CrossRef]

Mcgauley, M. P.

K. Marcinkowska, M. P. Mcgauley, and E. A. Symons, “A new carbon monoxide sensor based on a hydrophobic CO oxidation catalyst,” Sens. Actuators B 5, 91–96 (1991).
[CrossRef]

Merchant, D. F.

D. F. Merchant, P. J. Scully, and N. F. Schmitt, “Chemical tapering of polymer optical fibre,” Sens. Actuators A 76, 365–371 (1999).
[CrossRef]

Moreno, J.

J. Moreno, F. J. Arregui, and I. R. Matias, “Fiber optic ammonia sensing employing novel thermoplastic polyurethane membranes,” Sens. Actuators B 105, 419–424(2005).
[CrossRef]

Murabayashi, M.

A. Yimit, K. Itoh, and M. Murabayashi, “Detection of ammonia in the ppt range based on composite optical waveguide pH sensor,” Sens. Actuators B 88, 239–245 (2003).
[CrossRef]

Nnanna, A. G. A.

S. S. Shastry, A. M. Abdi, and A. G. A. Nnanna, “Investigation of fiber optic sensor for monitoring of ammonia,” in ASME Conference Proceedings, Vol. 6: Electronics and Photonics (2008), pp. 55–59.

Oram, B.

B. Oram, “Nitrogen-ammonia in water” (Wilkes University Center for Environmental Quality Environmental Engineering and Earth Sciences, 1999).

Pisco, M.

M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “Ammonia detection in water with a tin dioxide based optical sensor,” in Sensors and Microsystems (World Science, 2005), pp. 341–345.

Pletcher, D.

D. Pletcher, J. Evans, P. R. Warburton, and T. K. Gibbs, “Acidic gas sensors and method of using the same,” U.S. patent 5,071,526 (10 December 1991).

Polster, C. S.

C. S. Polster and C. D. Baertsch, “Fuel cells (application of CuOx-CeO2 catalysts as sensor substrates for catalytic detection of CO in H2 fuel),” in AIChE 2008 Annual Meeting (American Institute of Chemical Engineers, 2008).

Poncin-Epaillard, F.

A. Airoudj, D. Debarnot, B. Beche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76, 314–319 (2008).
[CrossRef]

Russell, D. D.

T. V. Krishna, J. R. Jessing, D. D. Russell, J. Scaggs, L. R. Warner, and J. A. Hartman, “Modeling and design of polythiophene gate electrode ChemFETs for environmental pollutant sensing,” in Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (IEEE, 2003), pp. 271–274.

Saunders, C.

C. Saunders and P. J. Scully, “Distribution of plastic optical fiber measurement of pH using a photon counting OTDR,” J. Phys. Conf. Ser. 15, 61–66 (2005).
[CrossRef]

Scaggs, J.

T. V. Krishna, J. R. Jessing, D. D. Russell, J. Scaggs, L. R. Warner, and J. A. Hartman, “Modeling and design of polythiophene gate electrode ChemFETs for environmental pollutant sensing,” in Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (IEEE, 2003), pp. 271–274.

Schmitt, N. F.

D. F. Merchant, P. J. Scully, and N. F. Schmitt, “Chemical tapering of polymer optical fibre,” Sens. Actuators A 76, 365–371 (1999).
[CrossRef]

Scully, P. J.

C. Saunders and P. J. Scully, “Distribution of plastic optical fiber measurement of pH using a photon counting OTDR,” J. Phys. Conf. Ser. 15, 61–66 (2005).
[CrossRef]

D. F. Merchant, P. J. Scully, and N. F. Schmitt, “Chemical tapering of polymer optical fibre,” Sens. Actuators A 76, 365–371 (1999).
[CrossRef]

Shastry, S. S.

S. S. Shastry, A. M. Abdi, and A. G. A. Nnanna, “Investigation of fiber optic sensor for monitoring of ammonia,” in ASME Conference Proceedings, Vol. 6: Electronics and Photonics (2008), pp. 55–59.

Smyntyna, V.

M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “Ammonia detection in water with a tin dioxide based optical sensor,” in Sensors and Microsystems (World Science, 2005), pp. 341–345.

Soleimani, M.

G. Absalan, M. Soleimani, M. Asadi, and M. B. Ahmadi, “Constructing a new optical sensor for monitoring ammonia in water samples using bis(acetylacetoneethylendiamine)-tributylphosphin cobalt(III) tetraphenylborate complex-coated triacetylcellulose,” Anal. Sci. 20, 1433–1436 (2004).
[CrossRef]

Stetter, J. R.

Y. Chao, W. J. Buttner, K. Gupta, and J. R. Stetter, “Hydrogen amperometric gas sensor: performance evaluation by SSTUF,” in Chemical Sensors VI: Chemical and Biological Sensors and Analytical Systems (2004).

Su, Y.

Z. Jin, Y. Su, and Y. Duan, “Development of a polyaniline-based optical ammonia sensor,” Sens. Actuators B 72, 75–79 (2001).
[CrossRef]

Sun, T.

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

Surre, F.

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

Symons, E. A.

K. Marcinkowska, M. P. Mcgauley, and E. A. Symons, “A new carbon monoxide sensor based on a hydrophobic CO oxidation catalyst,” Sens. Actuators B 5, 91–96 (1991).
[CrossRef]

Tao, S.

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724–731 (2007).
[CrossRef]

S. Tao, L. Xu, and J. C. Fanguy, “Optical Fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sens. Actuators B 115, 158–163 (2006).
[CrossRef]

S. Tao, “Optical fiber chemical sensor with sol-gel derive refractive material as transducer for high temperature gas sensing in clean coal technology,” Final scientific/technical report, Project ID number DE-FC26-04NT42230 (Institute for Clean Energy Technology, Mississippi State University, 2006).

Viter, R.

M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “Ammonia detection in water with a tin dioxide based optical sensor,” in Sensors and Microsystems (World Science, 2005), pp. 341–345.

Warburton, P. R.

D. Pletcher, J. Evans, P. R. Warburton, and T. K. Gibbs, “Acidic gas sensors and method of using the same,” U.S. patent 5,071,526 (10 December 1991).

Warner, L. R.

T. V. Krishna, J. R. Jessing, D. D. Russell, J. Scaggs, L. R. Warner, and J. A. Hartman, “Modeling and design of polythiophene gate electrode ChemFETs for environmental pollutant sensing,” in Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (IEEE, 2003), pp. 271–274.

Wohltjen, H.

Xu, L.

S. Tao, L. Xu, and J. C. Fanguy, “Optical Fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sens. Actuators B 115, 158–163 (2006).
[CrossRef]

Yimit, A.

A. Yimit, K. Itoh, and M. Murabayashi, “Detection of ammonia in the ppt range based on composite optical waveguide pH sensor,” Sens. Actuators B 88, 239–245 (2003).
[CrossRef]

Yuan, J.

J. Yuan and M. A. El-Sherif, “Fiber-optic chemical sensor using polyaniline as modified cladding material,” IEEE Sens. J. 3, 5–12 (2003).
[CrossRef]

Anal. Sci.

G. Absalan, M. Soleimani, M. Asadi, and M. B. Ahmadi, “Constructing a new optical sensor for monitoring ammonia in water samples using bis(acetylacetoneethylendiamine)-tributylphosphin cobalt(III) tetraphenylborate complex-coated triacetylcellulose,” Anal. Sci. 20, 1433–1436 (2004).
[CrossRef]

Ground Water Monit. Remediat.

C. K. Ho and C. F. Lohrstorfer, “In situ monitoring of vapor phase TCE using a chemiresistor microchemical sensor,” Ground Water Monit. Remediat. 23, 85–90 (2003).
[CrossRef]

IEEE Sens. J.

J. Yuan and M. A. El-Sherif, “Fiber-optic chemical sensor using polyaniline as modified cladding material,” IEEE Sens. J. 3, 5–12 (2003).
[CrossRef]

J. Phys. Conf. Ser.

F. Surre, W. B. Lyons, T. Sun, K. T. V. Grattan, S. O. Keeffe, E. Lewis, C. Elosua, M. Harnaez, and C. Barian, “U-band fiber optic pH sensor using layer by layer electrostatic self assembly technique,” J. Phys. Conf. Ser. 178, 012046 (2009).
[CrossRef]

C. Saunders and P. J. Scully, “Distribution of plastic optical fiber measurement of pH using a photon counting OTDR,” J. Phys. Conf. Ser. 15, 61–66 (2005).
[CrossRef]

Opt. Lett.

Sens. Actuators A

D. F. Merchant, P. J. Scully, and N. F. Schmitt, “Chemical tapering of polymer optical fibre,” Sens. Actuators A 76, 365–371 (1999).
[CrossRef]

Sens. Actuators B

J. Moreno, F. J. Arregui, and I. R. Matias, “Fiber optic ammonia sensing employing novel thermoplastic polyurethane membranes,” Sens. Actuators B 105, 419–424(2005).
[CrossRef]

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sens. Actuators B 110, 252–259 (2005).
[CrossRef]

Z. Jin, Y. Su, and Y. Duan, “Development of a polyaniline-based optical ammonia sensor,” Sens. Actuators B 72, 75–79 (2001).
[CrossRef]

S. Tao, L. Xu, and J. C. Fanguy, “Optical Fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sens. Actuators B 115, 158–163 (2006).
[CrossRef]

S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. Actuators B 120, 724–731 (2007).
[CrossRef]

A. Yimit, K. Itoh, and M. Murabayashi, “Detection of ammonia in the ppt range based on composite optical waveguide pH sensor,” Sens. Actuators B 88, 239–245 (2003).
[CrossRef]

K. Marcinkowska, M. P. Mcgauley, and E. A. Symons, “A new carbon monoxide sensor based on a hydrophobic CO oxidation catalyst,” Sens. Actuators B 5, 91–96 (1991).
[CrossRef]

Talanta

A. Airoudj, D. Debarnot, B. Beche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76, 314–319 (2008).
[CrossRef]

Other

T. V. Krishna, J. R. Jessing, D. D. Russell, J. Scaggs, L. R. Warner, and J. A. Hartman, “Modeling and design of polythiophene gate electrode ChemFETs for environmental pollutant sensing,” in Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (IEEE, 2003), pp. 271–274.

B. Oram, “Nitrogen-ammonia in water” (Wilkes University Center for Environmental Quality Environmental Engineering and Earth Sciences, 1999).

S. W. Gay and K. F. Knowlton, “Ammonia emissions and animal agriculture,” Virginia Cooperative Extension Publication 442-110 (2009).

M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “Ammonia detection in water with a tin dioxide based optical sensor,” in Sensors and Microsystems (World Science, 2005), pp. 341–345.

D. Pletcher, J. Evans, P. R. Warburton, and T. K. Gibbs, “Acidic gas sensors and method of using the same,” U.S. patent 5,071,526 (10 December 1991).

Y. Chao, W. J. Buttner, K. Gupta, and J. R. Stetter, “Hydrogen amperometric gas sensor: performance evaluation by SSTUF,” in Chemical Sensors VI: Chemical and Biological Sensors and Analytical Systems (2004).

C. S. Polster and C. D. Baertsch, “Fuel cells (application of CuOx-CeO2 catalysts as sensor substrates for catalytic detection of CO in H2 fuel),” in AIChE 2008 Annual Meeting (American Institute of Chemical Engineers, 2008).

S. S. Shastry, A. M. Abdi, and A. G. A. Nnanna, “Investigation of fiber optic sensor for monitoring of ammonia,” in ASME Conference Proceedings, Vol. 6: Electronics and Photonics (2008), pp. 55–59.

S. Tao, “Optical fiber chemical sensor with sol-gel derive refractive material as transducer for high temperature gas sensing in clean coal technology,” Final scientific/technical report, Project ID number DE-FC26-04NT42230 (Institute for Clean Energy Technology, Mississippi State University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of experimental setup. (a) Stagnant and (b) dynamic water system.

Fig. 2.
Fig. 2.

Intensity as a function of wavelength at different ammonia concentrations.

Fig. 3.
Fig. 3.

Absorbance at different ammonia concentrations.

Fig. 4.
Fig. 4.

Change in absorbance with time upon batch additions of concentrated ammonia.

Fig. 5.
Fig. 5.

Reversibility test of the sensor.

Fig. 6.
Fig. 6.

Sensor response to ammonia concentration cycling at blue region.

Fig. 7.
Fig. 7.

Ammonia concentration versus change in intensity, ΔI.

Fig. 8.
Fig. 8.

Ammonia concentration versus reverse time, tR.

Fig. 9.
Fig. 9.

Ten days running water testing.

Fig. 10.
Fig. 10.

Recovery time for the ten days’ testing.

Tables (1)

Tables Icon

Table 1. Comparison of Sensor Performances in Stagnant and Dynamic Water Testing

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

NH3(vapor)+H2ONH4+OH,
NH4+OH+H+DyeNH4+Dye+H2O,
NH4+DyeH+Dye+NH3(vapor).
A=log10(II0),

Metrics