Abstract

Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO2) was used for cladding layers. Peak coupling efficiency of 6.6dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15, 1406–1418 (2006).
    [CrossRef]
  2. C. Zuniga, M. Rinaldi, S. M. Khamis, T. S. Jones, A. T. Johnson, and G. Piazza, “Nano-enabled microelectromechanical sensor for volatile organic chemical detection,” Appl. Phys. Lett. 94, 223122 (2009).
    [CrossRef]
  3. Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
    [CrossRef]
  4. S. Yu. Davydov, “Evaluation of physical parameters for the group III nitrates: BN, AlN, GaN, and InN,” Semiconductors 36, 41–44 (2002).
    [CrossRef]
  5. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009).
    [CrossRef]
  6. W. Werdecker and F. Aldinger, “Aluminum nitride—an alternative ceramic substrate for high power applications in microcircuits,” IEEE Trans. Comp. Hybrids Manufact. Technol. CHMT-7, 399–404 (1984).
    [CrossRef]
  7. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
    [CrossRef]
  8. D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
    [CrossRef]
  9. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12, 1437–1442 (2004).
    [CrossRef]
  10. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [CrossRef]
  11. X. Tang, Y. Yuan, K. Wongchotigul, and M. G. Spencer, “Dispersion properties of aluminum nitride as measured by an optical waveguide technique,” Appl. Phys. Lett. 70, 3206–3208 (1997).
    [CrossRef]
  12. G. T. Kiehne, G. K. L. Wong, and J. B. Ketterson, “Optical second-harmonic generation in sputter-deposited AlN films,” J. Appl. Phys. 84, 5922–5927 (1998).
    [CrossRef]
  13. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
    [CrossRef]
  14. C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
    [CrossRef]
  15. F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1976).
  16. N. Sinha, G. Wabiszewski, R. Mahameed, V. V. Felmetsger, S. M. Tanner, R. W. Carpick, and G. Piazza, “Piezoelectric aluminum nitride nanoelectromechanical actuators,” Appl. Phys. Lett. 95, 053106 (2009).
    [CrossRef]
  17. S. Mishin, D. R. Marx, B. Sylvia, V. Lughi, K. L. Turner, and D. R. Clarke, “Sputtered AlN thin films on Si and electrodes for MEMS resonators: relationship between surface quality microstructure and film properties,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2003), pp. 2028–2032.

2012 (1)

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[CrossRef]

2010 (1)

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[CrossRef]

2009 (3)

N. Sinha, G. Wabiszewski, R. Mahameed, V. V. Felmetsger, S. M. Tanner, R. W. Carpick, and G. Piazza, “Piezoelectric aluminum nitride nanoelectromechanical actuators,” Appl. Phys. Lett. 95, 053106 (2009).
[CrossRef]

C. Zuniga, M. Rinaldi, S. M. Khamis, T. S. Jones, A. T. Johnson, and G. Piazza, “Nano-enabled microelectromechanical sensor for volatile organic chemical detection,” Appl. Phys. Lett. 94, 223122 (2009).
[CrossRef]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009).
[CrossRef]

2006 (3)

Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[CrossRef]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15, 1406–1418 (2006).
[CrossRef]

2004 (1)

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

2002 (1)

S. Yu. Davydov, “Evaluation of physical parameters for the group III nitrates: BN, AlN, GaN, and InN,” Semiconductors 36, 41–44 (2002).
[CrossRef]

1998 (1)

G. T. Kiehne, G. K. L. Wong, and J. B. Ketterson, “Optical second-harmonic generation in sputter-deposited AlN films,” J. Appl. Phys. 84, 5922–5927 (1998).
[CrossRef]

1997 (1)

X. Tang, Y. Yuan, K. Wongchotigul, and M. G. Spencer, “Dispersion properties of aluminum nitride as measured by an optical waveguide technique,” Appl. Phys. Lett. 70, 3206–3208 (1997).
[CrossRef]

1984 (1)

W. Werdecker and F. Aldinger, “Aluminum nitride—an alternative ceramic substrate for high power applications in microcircuits,” IEEE Trans. Comp. Hybrids Manufact. Technol. CHMT-7, 399–404 (1984).
[CrossRef]

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Adibi, A.

Aldinger, F.

W. Werdecker and F. Aldinger, “Aluminum nitride—an alternative ceramic substrate for high power applications in microcircuits,” IEEE Trans. Comp. Hybrids Manufact. Technol. CHMT-7, 399–404 (1984).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Atabaki, A. H.

Ayre, M.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Baets, R.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Barwicz, T.

Bienstman, P.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Bogaerts, W.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Buhl, L. L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[CrossRef]

Carpick, R. W.

N. Sinha, G. Wabiszewski, R. Mahameed, V. V. Felmetsger, S. M. Tanner, R. W. Carpick, and G. Piazza, “Piezoelectric aluminum nitride nanoelectromechanical actuators,” Appl. Phys. Lett. 95, 053106 (2009).
[CrossRef]

Chen, L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[CrossRef]

Chen, Y.-K.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[CrossRef]

Clarke, D. R.

S. Mishin, D. R. Marx, B. Sylvia, V. Lughi, K. L. Turner, and D. R. Clarke, “Sputtered AlN thin films on Si and electrodes for MEMS resonators: relationship between surface quality microstructure and film properties,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2003), pp. 2028–2032.

Davydov, S. Yu.

S. Yu. Davydov, “Evaluation of physical parameters for the group III nitrates: BN, AlN, GaN, and InN,” Semiconductors 36, 41–44 (2002).
[CrossRef]

Doerr, C. R.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[CrossRef]

Felmetsger, V. V.

N. Sinha, G. Wabiszewski, R. Mahameed, V. V. Felmetsger, S. M. Tanner, R. W. Carpick, and G. Piazza, “Piezoelectric aluminum nitride nanoelectromechanical actuators,” Appl. Phys. Lett. 95, 053106 (2009).
[CrossRef]

Haus, H. A.

Hosseini, E. S.

Ippen, E. P.

Jenkins, F. A.

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1976).

Johnson, A. T.

C. Zuniga, M. Rinaldi, S. M. Khamis, T. S. Jones, A. T. Johnson, and G. Piazza, “Nano-enabled microelectromechanical sensor for volatile organic chemical detection,” Appl. Phys. Lett. 94, 223122 (2009).
[CrossRef]

Jones, T. S.

C. Zuniga, M. Rinaldi, S. M. Khamis, T. S. Jones, A. T. Johnson, and G. Piazza, “Nano-enabled microelectromechanical sensor for volatile organic chemical detection,” Appl. Phys. Lett. 94, 223122 (2009).
[CrossRef]

Kasu, M.

Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[CrossRef]

Ketterson, J. B.

G. T. Kiehne, G. K. L. Wong, and J. B. Ketterson, “Optical second-harmonic generation in sputter-deposited AlN films,” J. Appl. Phys. 84, 5922–5927 (1998).
[CrossRef]

Khamis, S. M.

C. Zuniga, M. Rinaldi, S. M. Khamis, T. S. Jones, A. T. Johnson, and G. Piazza, “Nano-enabled microelectromechanical sensor for volatile organic chemical detection,” Appl. Phys. Lett. 94, 223122 (2009).
[CrossRef]

Kiehne, G. T.

G. T. Kiehne, G. K. L. Wong, and J. B. Ketterson, “Optical second-harmonic generation in sputter-deposited AlN films,” J. Appl. Phys. 84, 5922–5927 (1998).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Lughi, V.

S. Mishin, D. R. Marx, B. Sylvia, V. Lughi, K. L. Turner, and D. R. Clarke, “Sputtered AlN thin films on Si and electrodes for MEMS resonators: relationship between surface quality microstructure and film properties,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2003), pp. 2028–2032.

Mahameed, R.

N. Sinha, G. Wabiszewski, R. Mahameed, V. V. Felmetsger, S. M. Tanner, R. W. Carpick, and G. Piazza, “Piezoelectric aluminum nitride nanoelectromechanical actuators,” Appl. Phys. Lett. 95, 053106 (2009).
[CrossRef]

Makimoto, T.

Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[CrossRef]

Marx, D. R.

S. Mishin, D. R. Marx, B. Sylvia, V. Lughi, K. L. Turner, and D. R. Clarke, “Sputtered AlN thin films on Si and electrodes for MEMS resonators: relationship between surface quality microstructure and film properties,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2003), pp. 2028–2032.

Mishin, S.

S. Mishin, D. R. Marx, B. Sylvia, V. Lughi, K. L. Turner, and D. R. Clarke, “Sputtered AlN thin films on Si and electrodes for MEMS resonators: relationship between surface quality microstructure and film properties,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2003), pp. 2028–2032.

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Pernice, W. H. P.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[CrossRef]

Piazza, G.

C. Zuniga, M. Rinaldi, S. M. Khamis, T. S. Jones, A. T. Johnson, and G. Piazza, “Nano-enabled microelectromechanical sensor for volatile organic chemical detection,” Appl. Phys. Lett. 94, 223122 (2009).
[CrossRef]

N. Sinha, G. Wabiszewski, R. Mahameed, V. V. Felmetsger, S. M. Tanner, R. W. Carpick, and G. Piazza, “Piezoelectric aluminum nitride nanoelectromechanical actuators,” Appl. Phys. Lett. 95, 053106 (2009).
[CrossRef]

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15, 1406–1418 (2006).
[CrossRef]

Pisano, A. P.

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15, 1406–1418 (2006).
[CrossRef]

Popovic, M. A.

Rakich, P. T.

Rinaldi, M.

C. Zuniga, M. Rinaldi, S. M. Khamis, T. S. Jones, A. T. Johnson, and G. Piazza, “Nano-enabled microelectromechanical sensor for volatile organic chemical detection,” Appl. Phys. Lett. 94, 223122 (2009).
[CrossRef]

Schuck, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[CrossRef]

Sinha, N.

N. Sinha, G. Wabiszewski, R. Mahameed, V. V. Felmetsger, S. M. Tanner, R. W. Carpick, and G. Piazza, “Piezoelectric aluminum nitride nanoelectromechanical actuators,” Appl. Phys. Lett. 95, 053106 (2009).
[CrossRef]

Smith, H. I.

Soltani, M.

Spencer, M. G.

X. Tang, Y. Yuan, K. Wongchotigul, and M. G. Spencer, “Dispersion properties of aluminum nitride as measured by an optical waveguide technique,” Appl. Phys. Lett. 70, 3206–3208 (1997).
[CrossRef]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Stephanou, P. J.

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15, 1406–1418 (2006).
[CrossRef]

Sylvia, B.

S. Mishin, D. R. Marx, B. Sylvia, V. Lughi, K. L. Turner, and D. R. Clarke, “Sputtered AlN thin films on Si and electrodes for MEMS resonators: relationship between surface quality microstructure and film properties,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2003), pp. 2028–2032.

Taillaert, D.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Tang, H. X.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[CrossRef]

Tang, X.

X. Tang, Y. Yuan, K. Wongchotigul, and M. G. Spencer, “Dispersion properties of aluminum nitride as measured by an optical waveguide technique,” Appl. Phys. Lett. 70, 3206–3208 (1997).
[CrossRef]

Taniyasu, Y.

Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[CrossRef]

Tanner, S. M.

N. Sinha, G. Wabiszewski, R. Mahameed, V. V. Felmetsger, S. M. Tanner, R. W. Carpick, and G. Piazza, “Piezoelectric aluminum nitride nanoelectromechanical actuators,” Appl. Phys. Lett. 95, 053106 (2009).
[CrossRef]

Turner, K. L.

S. Mishin, D. R. Marx, B. Sylvia, V. Lughi, K. L. Turner, and D. R. Clarke, “Sputtered AlN thin films on Si and electrodes for MEMS resonators: relationship between surface quality microstructure and film properties,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2003), pp. 2028–2032.

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

van Laere, F.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

van Thourhout, D.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Wabiszewski, G.

N. Sinha, G. Wabiszewski, R. Mahameed, V. V. Felmetsger, S. M. Tanner, R. W. Carpick, and G. Piazza, “Piezoelectric aluminum nitride nanoelectromechanical actuators,” Appl. Phys. Lett. 95, 053106 (2009).
[CrossRef]

Watts, M. R.

Werdecker, W.

W. Werdecker and F. Aldinger, “Aluminum nitride—an alternative ceramic substrate for high power applications in microcircuits,” IEEE Trans. Comp. Hybrids Manufact. Technol. CHMT-7, 399–404 (1984).
[CrossRef]

White, H. E.

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1976).

Wong, G. K. L.

G. T. Kiehne, G. K. L. Wong, and J. B. Ketterson, “Optical second-harmonic generation in sputter-deposited AlN films,” J. Appl. Phys. 84, 5922–5927 (1998).
[CrossRef]

Wongchotigul, K.

X. Tang, Y. Yuan, K. Wongchotigul, and M. G. Spencer, “Dispersion properties of aluminum nitride as measured by an optical waveguide technique,” Appl. Phys. Lett. 70, 3206–3208 (1997).
[CrossRef]

Xiong, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[CrossRef]

Yegnanarayanan, S.

Yuan, Y.

X. Tang, Y. Yuan, K. Wongchotigul, and M. G. Spencer, “Dispersion properties of aluminum nitride as measured by an optical waveguide technique,” Appl. Phys. Lett. 70, 3206–3208 (1997).
[CrossRef]

Zuniga, C.

C. Zuniga, M. Rinaldi, S. M. Khamis, T. S. Jones, A. T. Johnson, and G. Piazza, “Nano-enabled microelectromechanical sensor for volatile organic chemical detection,” Appl. Phys. Lett. 94, 223122 (2009).
[CrossRef]

Appl. Phys. (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Appl. Phys. Lett. (4)

C. Zuniga, M. Rinaldi, S. M. Khamis, T. S. Jones, A. T. Johnson, and G. Piazza, “Nano-enabled microelectromechanical sensor for volatile organic chemical detection,” Appl. Phys. Lett. 94, 223122 (2009).
[CrossRef]

X. Tang, Y. Yuan, K. Wongchotigul, and M. G. Spencer, “Dispersion properties of aluminum nitride as measured by an optical waveguide technique,” Appl. Phys. Lett. 70, 3206–3208 (1997).
[CrossRef]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
[CrossRef]

N. Sinha, G. Wabiszewski, R. Mahameed, V. V. Felmetsger, S. M. Tanner, R. W. Carpick, and G. Piazza, “Piezoelectric aluminum nitride nanoelectromechanical actuators,” Appl. Phys. Lett. 95, 053106 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[CrossRef]

IEEE Trans. Comp. Hybrids Manufact. Technol. (1)

W. Werdecker and F. Aldinger, “Aluminum nitride—an alternative ceramic substrate for high power applications in microcircuits,” IEEE Trans. Comp. Hybrids Manufact. Technol. CHMT-7, 399–404 (1984).
[CrossRef]

J. Appl. Phys. (1)

G. T. Kiehne, G. K. L. Wong, and J. B. Ketterson, “Optical second-harmonic generation in sputter-deposited AlN films,” J. Appl. Phys. 84, 5922–5927 (1998).
[CrossRef]

J. Microelectromech. Syst. (1)

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15, 1406–1418 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Nature (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[CrossRef]

Opt. Express (2)

Semiconductors (1)

S. Yu. Davydov, “Evaluation of physical parameters for the group III nitrates: BN, AlN, GaN, and InN,” Semiconductors 36, 41–44 (2002).
[CrossRef]

Other (2)

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1976).

S. Mishin, D. R. Marx, B. Sylvia, V. Lughi, K. L. Turner, and D. R. Clarke, “Sputtered AlN thin films on Si and electrodes for MEMS resonators: relationship between surface quality microstructure and film properties,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2003), pp. 2028–2032.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Geometry used for AlN grating coupler, (b) TE polarized optical mode calculated with COMSOL finite element mode solver.

Fig. 2.
Fig. 2.

(a) Electric field profile for AlN grating coupler at 1550 nm, (b) Simulated coupling efficiency of a single coupler.

Fig. 3.
Fig. 3.

(a) Optical photograph of the AlN grating coupler seen through top SiO2 cladding, (b) SEM image of the gratings (unclad state), where waveguide width is 17.5 μm, (c) zoomed-in SEM showing detail of 600 nm grating teeth with 600 nm spacings.

Fig. 4.
Fig. 4.

Measured transmissivity for a single AlN grating coupler with TE polarization (top, blue). Lower curve (red) shows transmissivity with a slightly modified pitch angle and full 60 nm, 1 dB bandwidth. Resolution bandwidth for the measurements is 100 pm.

Fig. 5.
Fig. 5.

Transmissivity values for AlN grating coupler with input fiber array mounted at various approximate pitch angles of incidence (in degrees). Resolution bandwidth for the measurements is 200 pm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1Λ=neffλnoλsinθ,

Metrics