Abstract

A novel adaptive forward linear prediction (FLP) denoising algorithm and a temperature drift modeling and compensation concept based on ambient temperature change rate for fiber-optic gyroscope (FOG) are presented to calibrate the errors caused by intense ambient temperature variation. The intense ambient temperature variation will bring large temperature errors, which will degrade the performance of FOG. To analyze the temperature variation, characteristics of FOG temperature experiments are developed at first. Then the adaptive FLP denoising algorithm is employed to eliminate the noise aiming at reducing noise interference. After that, a simple modeling concept of building the compensation model between temperature drift and ambient temperature change rate is first to be given (we have not found a report of better results in any literature). The semiphysical simulation results show that the proposed method significantly reduces the noise and drift caused by intense ambient temperature variation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Shupe, “Thermally induced nonreciprocity in the fiber-optic interferometer,” Appl. Opt. 19, 654–655 (1980).
    [CrossRef]
  2. C. M. Lofts, P. B. Ruffin, M. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 34, 2856–2863 (1995).
    [CrossRef]
  3. J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils, part 2,” Opt. Eng. 36, 29–34 (1997).
    [CrossRef]
  4. F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14, 27–41 (1996).
    [CrossRef]
  5. S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861–865 (2007).
    [CrossRef]
  6. Y. S. Zhang, Y. Y. Wang, T. Yang, R. Yin, and J. C. Fang, “Dynamic angular velocity modeling and error compensation of one-fiber fiber optic gyroscope (OFFOG) in the whole temperature range,” Meas. Sci. Technol. 23, 1–6 (2012).
  7. R. Zhu, Y. H. Zhang, and Q. L. Bao, “A novel intelligent strategy for improving measurement precision of FOG,” IEEE Trans. Instrum. Meas. 49, 1183–1188 (2000).
    [CrossRef]
  8. X. Y. Li, C. Zhang, Z. He, and Z. Zhong, “Temperature errors of IFOG and its compensation in engineering application,” in The 9th International Conference on Electronic Measurement and Instruments (IEEE, 2009), pp. 230–234.
  9. A. Noureldin, D. Halliday, H. Tabler, and M. P. Mintchev, “New technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems,” Opt. Eng. 40, 2097–2106 (2001).
    [CrossRef]
  10. D. Han, C. Xiong, and H. Liu, “A wavelet-based method for processing signal of FOG in strapdown inertial systems,” Int. J. Robot. Autom. 24, 185–193 (2009).
    [CrossRef]
  11. H. M. Qian and J. C. Ma, “Research on fiber optic gyro signal de-noising based on wavelet packet soft-threshold,” J. Syst. Eng. Electron. 20, 607–612 (2009).
  12. X. D Luo, Z. H. Jia, and Q. Wang, “A new variable step size LMS adaptive filtering algorithm,” Acta Electron. Sin. 34, 1123–1126 (2006) (In Chinese).
  13. I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990).
    [CrossRef]
  14. Y. H. Tang, S. Solve, and T. J. Witt, “Allan variance analysis of Josephson voltage standard comparison for data taken at unequal time intervals,” IEEE Trans. Instrum. Meas. 60, 2248–2254 (2011).
    [CrossRef]

2012

Y. S. Zhang, Y. Y. Wang, T. Yang, R. Yin, and J. C. Fang, “Dynamic angular velocity modeling and error compensation of one-fiber fiber optic gyroscope (OFFOG) in the whole temperature range,” Meas. Sci. Technol. 23, 1–6 (2012).

2011

Y. H. Tang, S. Solve, and T. J. Witt, “Allan variance analysis of Josephson voltage standard comparison for data taken at unequal time intervals,” IEEE Trans. Instrum. Meas. 60, 2248–2254 (2011).
[CrossRef]

2009

D. Han, C. Xiong, and H. Liu, “A wavelet-based method for processing signal of FOG in strapdown inertial systems,” Int. J. Robot. Autom. 24, 185–193 (2009).
[CrossRef]

H. M. Qian and J. C. Ma, “Research on fiber optic gyro signal de-noising based on wavelet packet soft-threshold,” J. Syst. Eng. Electron. 20, 607–612 (2009).

2007

2006

X. D Luo, Z. H. Jia, and Q. Wang, “A new variable step size LMS adaptive filtering algorithm,” Acta Electron. Sin. 34, 1123–1126 (2006) (In Chinese).

2001

A. Noureldin, D. Halliday, H. Tabler, and M. P. Mintchev, “New technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems,” Opt. Eng. 40, 2097–2106 (2001).
[CrossRef]

2000

R. Zhu, Y. H. Zhang, and Q. L. Bao, “A novel intelligent strategy for improving measurement precision of FOG,” IEEE Trans. Instrum. Meas. 49, 1183–1188 (2000).
[CrossRef]

1997

J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils, part 2,” Opt. Eng. 36, 29–34 (1997).
[CrossRef]

1996

F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14, 27–41 (1996).
[CrossRef]

1995

C. M. Lofts, P. B. Ruffin, M. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 34, 2856–2863 (1995).
[CrossRef]

1990

I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990).
[CrossRef]

1980

Bao, Q. L.

R. Zhu, Y. H. Zhang, and Q. L. Bao, “A novel intelligent strategy for improving measurement precision of FOG,” IEEE Trans. Instrum. Meas. 49, 1183–1188 (2000).
[CrossRef]

Blin, S.

Daubechies, I.

I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990).
[CrossRef]

Digonnet, M. J. F.

Fang, J. C.

Y. S. Zhang, Y. Y. Wang, T. Yang, R. Yin, and J. C. Fang, “Dynamic angular velocity modeling and error compensation of one-fiber fiber optic gyroscope (OFFOG) in the whole temperature range,” Meas. Sci. Technol. 23, 1–6 (2012).

Halliday, D.

A. Noureldin, D. Halliday, H. Tabler, and M. P. Mintchev, “New technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems,” Opt. Eng. 40, 2097–2106 (2001).
[CrossRef]

Han, D.

D. Han, C. Xiong, and H. Liu, “A wavelet-based method for processing signal of FOG in strapdown inertial systems,” Int. J. Robot. Autom. 24, 185–193 (2009).
[CrossRef]

He, Z.

X. Y. Li, C. Zhang, Z. He, and Z. Zhong, “Temperature errors of IFOG and its compensation in engineering application,” in The 9th International Conference on Electronic Measurement and Instruments (IEEE, 2009), pp. 230–234.

Jia, Z. H.

X. D Luo, Z. H. Jia, and Q. Wang, “A new variable step size LMS adaptive filtering algorithm,” Acta Electron. Sin. 34, 1123–1126 (2006) (In Chinese).

Kim, H. K.

Kino, G. S.

Li, X. Y.

X. Y. Li, C. Zhang, Z. He, and Z. Zhong, “Temperature errors of IFOG and its compensation in engineering application,” in The 9th International Conference on Electronic Measurement and Instruments (IEEE, 2009), pp. 230–234.

Liu, H.

D. Han, C. Xiong, and H. Liu, “A wavelet-based method for processing signal of FOG in strapdown inertial systems,” Int. J. Robot. Autom. 24, 185–193 (2009).
[CrossRef]

Lofts, C. M.

C. M. Lofts, P. B. Ruffin, M. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 34, 2856–2863 (1995).
[CrossRef]

Luo, X. D

X. D Luo, Z. H. Jia, and Q. Wang, “A new variable step size LMS adaptive filtering algorithm,” Acta Electron. Sin. 34, 1123–1126 (2006) (In Chinese).

Ma, J. C.

H. M. Qian and J. C. Ma, “Research on fiber optic gyro signal de-noising based on wavelet packet soft-threshold,” J. Syst. Eng. Electron. 20, 607–612 (2009).

Mintchev, M. P.

A. Noureldin, D. Halliday, H. Tabler, and M. P. Mintchev, “New technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems,” Opt. Eng. 40, 2097–2106 (2001).
[CrossRef]

Mohr, F.

F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14, 27–41 (1996).
[CrossRef]

Noureldin, A.

A. Noureldin, D. Halliday, H. Tabler, and M. P. Mintchev, “New technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems,” Opt. Eng. 40, 2097–2106 (2001).
[CrossRef]

Parker, M.

C. M. Lofts, P. B. Ruffin, M. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 34, 2856–2863 (1995).
[CrossRef]

Qian, H. M.

H. M. Qian and J. C. Ma, “Research on fiber optic gyro signal de-noising based on wavelet packet soft-threshold,” J. Syst. Eng. Electron. 20, 607–612 (2009).

Ruffin, P. B.

J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils, part 2,” Opt. Eng. 36, 29–34 (1997).
[CrossRef]

C. M. Lofts, P. B. Ruffin, M. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 34, 2856–2863 (1995).
[CrossRef]

Sawyer, J.

J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils, part 2,” Opt. Eng. 36, 29–34 (1997).
[CrossRef]

Shupe, D. M.

Solve, S.

Y. H. Tang, S. Solve, and T. J. Witt, “Allan variance analysis of Josephson voltage standard comparison for data taken at unequal time intervals,” IEEE Trans. Instrum. Meas. 60, 2248–2254 (2011).
[CrossRef]

Sung, C. C.

J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils, part 2,” Opt. Eng. 36, 29–34 (1997).
[CrossRef]

C. M. Lofts, P. B. Ruffin, M. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 34, 2856–2863 (1995).
[CrossRef]

Tabler, H.

A. Noureldin, D. Halliday, H. Tabler, and M. P. Mintchev, “New technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems,” Opt. Eng. 40, 2097–2106 (2001).
[CrossRef]

Tang, Y. H.

Y. H. Tang, S. Solve, and T. J. Witt, “Allan variance analysis of Josephson voltage standard comparison for data taken at unequal time intervals,” IEEE Trans. Instrum. Meas. 60, 2248–2254 (2011).
[CrossRef]

Wang, Q.

X. D Luo, Z. H. Jia, and Q. Wang, “A new variable step size LMS adaptive filtering algorithm,” Acta Electron. Sin. 34, 1123–1126 (2006) (In Chinese).

Wang, Y. Y.

Y. S. Zhang, Y. Y. Wang, T. Yang, R. Yin, and J. C. Fang, “Dynamic angular velocity modeling and error compensation of one-fiber fiber optic gyroscope (OFFOG) in the whole temperature range,” Meas. Sci. Technol. 23, 1–6 (2012).

Witt, T. J.

Y. H. Tang, S. Solve, and T. J. Witt, “Allan variance analysis of Josephson voltage standard comparison for data taken at unequal time intervals,” IEEE Trans. Instrum. Meas. 60, 2248–2254 (2011).
[CrossRef]

Xiong, C.

D. Han, C. Xiong, and H. Liu, “A wavelet-based method for processing signal of FOG in strapdown inertial systems,” Int. J. Robot. Autom. 24, 185–193 (2009).
[CrossRef]

Yang, T.

Y. S. Zhang, Y. Y. Wang, T. Yang, R. Yin, and J. C. Fang, “Dynamic angular velocity modeling and error compensation of one-fiber fiber optic gyroscope (OFFOG) in the whole temperature range,” Meas. Sci. Technol. 23, 1–6 (2012).

Yin, R.

Y. S. Zhang, Y. Y. Wang, T. Yang, R. Yin, and J. C. Fang, “Dynamic angular velocity modeling and error compensation of one-fiber fiber optic gyroscope (OFFOG) in the whole temperature range,” Meas. Sci. Technol. 23, 1–6 (2012).

Zhang, C.

X. Y. Li, C. Zhang, Z. He, and Z. Zhong, “Temperature errors of IFOG and its compensation in engineering application,” in The 9th International Conference on Electronic Measurement and Instruments (IEEE, 2009), pp. 230–234.

Zhang, Y. H.

R. Zhu, Y. H. Zhang, and Q. L. Bao, “A novel intelligent strategy for improving measurement precision of FOG,” IEEE Trans. Instrum. Meas. 49, 1183–1188 (2000).
[CrossRef]

Zhang, Y. S.

Y. S. Zhang, Y. Y. Wang, T. Yang, R. Yin, and J. C. Fang, “Dynamic angular velocity modeling and error compensation of one-fiber fiber optic gyroscope (OFFOG) in the whole temperature range,” Meas. Sci. Technol. 23, 1–6 (2012).

Zhong, Z.

X. Y. Li, C. Zhang, Z. He, and Z. Zhong, “Temperature errors of IFOG and its compensation in engineering application,” in The 9th International Conference on Electronic Measurement and Instruments (IEEE, 2009), pp. 230–234.

Zhu, R.

R. Zhu, Y. H. Zhang, and Q. L. Bao, “A novel intelligent strategy for improving measurement precision of FOG,” IEEE Trans. Instrum. Meas. 49, 1183–1188 (2000).
[CrossRef]

Acta Electron. Sin.

X. D Luo, Z. H. Jia, and Q. Wang, “A new variable step size LMS adaptive filtering algorithm,” Acta Electron. Sin. 34, 1123–1126 (2006) (In Chinese).

Appl. Opt.

IEEE Trans. Inf. Theory

I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990).
[CrossRef]

IEEE Trans. Instrum. Meas.

Y. H. Tang, S. Solve, and T. J. Witt, “Allan variance analysis of Josephson voltage standard comparison for data taken at unequal time intervals,” IEEE Trans. Instrum. Meas. 60, 2248–2254 (2011).
[CrossRef]

R. Zhu, Y. H. Zhang, and Q. L. Bao, “A novel intelligent strategy for improving measurement precision of FOG,” IEEE Trans. Instrum. Meas. 49, 1183–1188 (2000).
[CrossRef]

Int. J. Robot. Autom.

D. Han, C. Xiong, and H. Liu, “A wavelet-based method for processing signal of FOG in strapdown inertial systems,” Int. J. Robot. Autom. 24, 185–193 (2009).
[CrossRef]

J. Lightwave Technol.

J. Syst. Eng. Electron.

H. M. Qian and J. C. Ma, “Research on fiber optic gyro signal de-noising based on wavelet packet soft-threshold,” J. Syst. Eng. Electron. 20, 607–612 (2009).

Meas. Sci. Technol.

Y. S. Zhang, Y. Y. Wang, T. Yang, R. Yin, and J. C. Fang, “Dynamic angular velocity modeling and error compensation of one-fiber fiber optic gyroscope (OFFOG) in the whole temperature range,” Meas. Sci. Technol. 23, 1–6 (2012).

Opt. Eng.

A. Noureldin, D. Halliday, H. Tabler, and M. P. Mintchev, “New technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems,” Opt. Eng. 40, 2097–2106 (2001).
[CrossRef]

C. M. Lofts, P. B. Ruffin, M. Parker, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 34, 2856–2863 (1995).
[CrossRef]

J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils, part 2,” Opt. Eng. 36, 29–34 (1997).
[CrossRef]

Other

X. Y. Li, C. Zhang, Z. He, and Z. Zhong, “Temperature errors of IFOG and its compensation in engineering application,” in The 9th International Conference on Electronic Measurement and Instruments (IEEE, 2009), pp. 230–234.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

FOG output under different temperature change rate.

Fig. 2.
Fig. 2.

Denoising results and comparison. (a) Original output, SE(standarderror)=0.64; (b) the output denoised by WT, SE=0.59; (c) the output denoised by WPT, SE=0.57; and (d) the output denoised by adaptive FLP, SE=0.55.

Fig. 3.
Fig. 3.

Original and denoised FOG output Allan variance results.

Fig. 4.
Fig. 4.

FOG output after denoising. (a) three-dimensional (3D) view; and (b) two-dimensional (2D) view of (a).

Fig. 5.
Fig. 5.

Traditional schematic drawings for compensation principle of FOG.

Fig. 6.
Fig. 6.

Novel schematic drawings for compensation principle of FOG.

Fig. 7.
Fig. 7.

Polynomial model to identify the parameters a and b.

Fig. 8.
Fig. 8.

Plot of the drift/compensation model. (a) 3D view. (b) 2D view of (a).

Fig. 9.
Fig. 9.

FOG error after applying the compensation.

Fig. 10.
Fig. 10.

FOG output after applying a denoising algorithm and compensation model. (a). FOG output under 8°C/min. (b). FOG output under 10°C/min.

Tables (1)

Tables Icon

Table 1. Residuals Reduced from Every Model Order

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ΔϕE(t)=β0c0·nθ·0Lν˙(z,t)(L2z)dz,
x^(n)=p=1Nαpx(np)=ATX(n1),
e(n)=x^(n)x(n),
A(n+1)=A(n)+εe(n)X(n1),
ε(n)=β(11+exp(α|e(n)|m)0.5),
ε=f(Tr,t).
ε=at+b.
a=f(Tr),b=f(Tr).
{a=a0+a1Trb=b0+b1Tr+b2Tr2+b3Tr3+b4Tr4.
Wc=Wf(Tr,t).

Metrics