Abstract

We report the generation of a zero-order Bessel beam of continuously variable spot size using a simple optical setup. We have used a pair of metal axicon mirrors to generate a hollow beam of variable dark diameter. This beam was subsequently focused by a convex lens to get a Bessel beam of variable spot size. We also studied the effect of a hollow-beam ring width on nondiffracting propagation range of the generated beam.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef]
  2. S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
    [CrossRef]
  3. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
    [CrossRef]
  4. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
    [CrossRef]
  5. M. Yoshihiko and H. Makoto, “Micro grooving of metallic material using a Bessel beam,” Rev. Laser Eng. 34, 842–847 (2006).
  6. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A 84, 423–430 (2006).
    [CrossRef]
  7. M. Riox, R. Tremblay, and P. A. Belanger, “Linear, annular and radial focusing with axicons and applications to laser machining,” Appl. Opt. 17, 1532–1536 (1978).
    [CrossRef]
  8. X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
    [CrossRef]
  9. S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
    [CrossRef]
  10. J. Turunen, A. Vasara, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
    [CrossRef]
  11. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991).
    [CrossRef]
  12. J. Pu, H. Jhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39, 803–807 (2000).
    [CrossRef]
  13. J. F. Fortin, G. Rousseau, N. McCarthy, and M. Piche, “Generation of quasi-Bessel beams and femtosecond optical X-waves with conical mirrors,” Proc. SPIE 4833, 876–884 (2003).
    [CrossRef]
  14. S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
    [CrossRef]
  15. K. B. Kuntz, B. Braverman, S. H. Youn, M. Lobino, E. M. Pessina, and A. I. Lvovsky, “Spatial and temporal characterization of a Bessel beam produced using a conical mirror,” Phys. Rev. A 79, 043802 (2009).
    [CrossRef]
  16. S. K. Tiwari, S. P. Ram, J. Jayabalan, and S. R. Mishra, “Measuring a narrow Bessel beam spot by scanning charge-coupled device (CCD) pixel,” Meas. Sci. Technol. 21, 025308 (2010).
    [CrossRef]
  17. E. E. Ushakova and S. N. Kurilkina, “Formation of Bessel light pulses by means of a conical mirror,” J. Appl. Spectrosc. 77, 827–831 (2011).
    [CrossRef]
  18. S. K. Tiwari, S. R. Mishra, and S. P. Ram, “Generation of a variable diameter collimated hollow laser beam using metal axicon mirrors,” Opt. Eng. 50, 014001 (2011).
    [CrossRef]
  19. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28, 2183–2185 (2003).
    [CrossRef]
  20. E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31, 3155–3157 (2006).
    [CrossRef]
  21. E. McLeod and C. B. Arnold, “Optical analysis of time-averaged multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Appl. Opt. 47, 3609–3618 (2008).
    [CrossRef]
  22. G. Milne, G. D. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
    [CrossRef]
  23. D. Brousseau, J. Drapeau, M. Piche, and E. F. Borra, “Generation of Bessel beams using a magnetic liquid deformable mirror,” Appl. Opt. 50, 4005–4010 (2011).
    [CrossRef]
  24. J. Brunne, M. Bock, A. Treffer, U. Wallrabe, and R. Grunwald, “Adaptive generation of Bessel-like beams by reflective multi-electrode piezo-axicons,” in Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper CF_P14.
  25. V. Vaičaitis and Š. Paulikas, “Formation of Bessel beams with continuously variable cone angle,” Opt. Quantum Electron. 35, 1065–1071 (2003).
    [CrossRef]
  26. Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998).
    [CrossRef]

2011 (3)

E. E. Ushakova and S. N. Kurilkina, “Formation of Bessel light pulses by means of a conical mirror,” J. Appl. Spectrosc. 77, 827–831 (2011).
[CrossRef]

S. K. Tiwari, S. R. Mishra, and S. P. Ram, “Generation of a variable diameter collimated hollow laser beam using metal axicon mirrors,” Opt. Eng. 50, 014001 (2011).
[CrossRef]

D. Brousseau, J. Drapeau, M. Piche, and E. F. Borra, “Generation of Bessel beams using a magnetic liquid deformable mirror,” Appl. Opt. 50, 4005–4010 (2011).
[CrossRef]

2010 (1)

S. K. Tiwari, S. P. Ram, J. Jayabalan, and S. R. Mishra, “Measuring a narrow Bessel beam spot by scanning charge-coupled device (CCD) pixel,” Meas. Sci. Technol. 21, 025308 (2010).
[CrossRef]

2009 (1)

K. B. Kuntz, B. Braverman, S. H. Youn, M. Lobino, E. M. Pessina, and A. I. Lvovsky, “Spatial and temporal characterization of a Bessel beam produced using a conical mirror,” Phys. Rev. A 79, 043802 (2009).
[CrossRef]

2008 (2)

E. McLeod and C. B. Arnold, “Optical analysis of time-averaged multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Appl. Opt. 47, 3609–3618 (2008).
[CrossRef]

G. Milne, G. D. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

2007 (2)

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

2006 (4)

M. Yoshihiko and H. Makoto, “Micro grooving of metallic material using a Bessel beam,” Rev. Laser Eng. 34, 842–847 (2006).

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A 84, 423–430 (2006).
[CrossRef]

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[CrossRef]

E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31, 3155–3157 (2006).
[CrossRef]

2003 (3)

V. Vaičaitis and Š. Paulikas, “Formation of Bessel beams with continuously variable cone angle,” Opt. Quantum Electron. 35, 1065–1071 (2003).
[CrossRef]

J. F. Fortin, G. Rousseau, N. McCarthy, and M. Piche, “Generation of quasi-Bessel beams and femtosecond optical X-waves with conical mirrors,” Proc. SPIE 4833, 876–884 (2003).
[CrossRef]

N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28, 2183–2185 (2003).
[CrossRef]

2001 (1)

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

2000 (2)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

J. Pu, H. Jhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39, 803–807 (2000).
[CrossRef]

1998 (1)

1991 (2)

R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991).
[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[CrossRef]

1989 (1)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

1978 (1)

Agate, B.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Arlt, J.

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

Arnold, C. B.

Belanger, P. A.

Bock, M.

J. Brunne, M. Bock, A. Treffer, U. Wallrabe, and R. Grunwald, “Adaptive generation of Bessel-like beams by reflective multi-electrode piezo-axicons,” in Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper CF_P14.

Borra, E. F.

Braverman, B.

K. B. Kuntz, B. Braverman, S. H. Youn, M. Lobino, E. M. Pessina, and A. I. Lvovsky, “Spatial and temporal characterization of a Bessel beam produced using a conical mirror,” Phys. Rev. A 79, 043802 (2009).
[CrossRef]

Brousseau, D.

Brown, C. T. A.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Brunne, J.

J. Brunne, M. Bock, A. Treffer, U. Wallrabe, and R. Grunwald, “Adaptive generation of Bessel-like beams by reflective multi-electrode piezo-axicons,” in Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper CF_P14.

Chattrapiban, N.

Chiu, D. T.

G. Milne, G. D. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Cofield, D.

Comrie, M.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Denschlag, J. H.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[CrossRef]

Dholakia, K.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

Drapeau, J.

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Fortin, J. F.

J. F. Fortin, G. Rousseau, N. McCarthy, and M. Piche, “Generation of quasi-Bessel beams and femtosecond optical X-waves with conical mirrors,” Proc. SPIE 4833, 876–884 (2003).
[CrossRef]

Friberg, A. T.

Garcés-Chávez, V.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Grunwald, R.

J. Brunne, M. Bock, A. Treffer, U. Wallrabe, and R. Grunwald, “Adaptive generation of Bessel-like beams by reflective multi-electrode piezo-axicons,” in Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper CF_P14.

Gunn-Moore, F.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Herman, R. M.

Hill, W. T.

Hopkins, A. B.

Inoue, T.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A 84, 423–430 (2006).
[CrossRef]

Jaroszewicz, Z.

Jayabalan, J.

S. K. Tiwari, S. P. Ram, J. Jayabalan, and S. R. Mishra, “Measuring a narrow Bessel beam spot by scanning charge-coupled device (CCD) pixel,” Meas. Sci. Technol. 21, 025308 (2010).
[CrossRef]

Jeffries, G. D.

G. Milne, G. D. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Jhang, H.

J. Pu, H. Jhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39, 803–807 (2000).
[CrossRef]

Kizuka, Y.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A 84, 423–430 (2006).
[CrossRef]

Kuntz, K. B.

K. B. Kuntz, B. Braverman, S. H. Youn, M. Lobino, E. M. Pessina, and A. I. Lvovsky, “Spatial and temporal characterization of a Bessel beam produced using a conical mirror,” Phys. Rev. A 79, 043802 (2009).
[CrossRef]

Kurilkina, S. N.

E. E. Ushakova and S. N. Kurilkina, “Formation of Bessel light pulses by means of a conical mirror,” J. Appl. Spectrosc. 77, 827–831 (2011).
[CrossRef]

Lang, F.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[CrossRef]

Lobino, M.

K. B. Kuntz, B. Braverman, S. H. Youn, M. Lobino, E. M. Pessina, and A. I. Lvovsky, “Spatial and temporal characterization of a Bessel beam produced using a conical mirror,” Phys. Rev. A 79, 043802 (2009).
[CrossRef]

Lvovsky, A. I.

K. B. Kuntz, B. Braverman, S. H. Youn, M. Lobino, E. M. Pessina, and A. I. Lvovsky, “Spatial and temporal characterization of a Bessel beam produced using a conical mirror,” Phys. Rev. A 79, 043802 (2009).
[CrossRef]

Makoto, H.

M. Yoshihiko and H. Makoto, “Micro grooving of metallic material using a Bessel beam,” Rev. Laser Eng. 34, 842–847 (2006).

Matsuoka, Y.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A 84, 423–430 (2006).
[CrossRef]

McCarthy, N.

J. F. Fortin, G. Rousseau, N. McCarthy, and M. Piche, “Generation of quasi-Bessel beams and femtosecond optical X-waves with conical mirrors,” Proc. SPIE 4833, 876–884 (2003).
[CrossRef]

McLeod, E.

Mehendale, S. C.

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Milne, G.

G. Milne, G. D. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Mishra, S. R.

S. K. Tiwari, S. R. Mishra, and S. P. Ram, “Generation of a variable diameter collimated hollow laser beam using metal axicon mirrors,” Opt. Eng. 50, 014001 (2011).
[CrossRef]

S. K. Tiwari, S. P. Ram, J. Jayabalan, and S. R. Mishra, “Measuring a narrow Bessel beam spot by scanning charge-coupled device (CCD) pixel,” Meas. Sci. Technol. 21, 025308 (2010).
[CrossRef]

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[CrossRef]

Morales, J.

Nemoto, S.

J. Pu, H. Jhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39, 803–807 (2000).
[CrossRef]

Paulikas, Š.

V. Vaičaitis and Š. Paulikas, “Formation of Bessel beams with continuously variable cone angle,” Opt. Quantum Electron. 35, 1065–1071 (2003).
[CrossRef]

Pessina, E. M.

K. B. Kuntz, B. Braverman, S. H. Youn, M. Lobino, E. M. Pessina, and A. I. Lvovsky, “Spatial and temporal characterization of a Bessel beam produced using a conical mirror,” Phys. Rev. A 79, 043802 (2009).
[CrossRef]

Piche, M.

D. Brousseau, J. Drapeau, M. Piche, and E. F. Borra, “Generation of Bessel beams using a magnetic liquid deformable mirror,” Appl. Opt. 50, 4005–4010 (2011).
[CrossRef]

J. F. Fortin, G. Rousseau, N. McCarthy, and M. Piche, “Generation of quasi-Bessel beams and femtosecond optical X-waves with conical mirrors,” Proc. SPIE 4833, 876–884 (2003).
[CrossRef]

Pu, J.

J. Pu, H. Jhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39, 803–807 (2000).
[CrossRef]

Ram, S. P.

S. K. Tiwari, S. R. Mishra, and S. P. Ram, “Generation of a variable diameter collimated hollow laser beam using metal axicon mirrors,” Opt. Eng. 50, 014001 (2011).
[CrossRef]

S. K. Tiwari, S. P. Ram, J. Jayabalan, and S. R. Mishra, “Measuring a narrow Bessel beam spot by scanning charge-coupled device (CCD) pixel,” Meas. Sci. Technol. 21, 025308 (2010).
[CrossRef]

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Riox, M.

Rogers, E. A.

Rousseau, G.

J. F. Fortin, G. Rousseau, N. McCarthy, and M. Piche, “Generation of quasi-Bessel beams and femtosecond optical X-waves with conical mirrors,” Proc. SPIE 4833, 876–884 (2003).
[CrossRef]

Roy, R.

Schmid, S.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[CrossRef]

Sibbett, W.

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Stevenson, D. J.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Thalhammer, G.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[CrossRef]

Tiwari, S. K.

S. K. Tiwari, S. R. Mishra, and S. P. Ram, “Generation of a variable diameter collimated hollow laser beam using metal axicon mirrors,” Opt. Eng. 50, 014001 (2011).
[CrossRef]

S. K. Tiwari, S. P. Ram, J. Jayabalan, and S. R. Mishra, “Measuring a narrow Bessel beam spot by scanning charge-coupled device (CCD) pixel,” Meas. Sci. Technol. 21, 025308 (2010).
[CrossRef]

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Treffer, A.

J. Brunne, M. Bock, A. Treffer, U. Wallrabe, and R. Grunwald, “Adaptive generation of Bessel-like beams by reflective multi-electrode piezo-axicons,” in Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper CF_P14.

Tremblay, R.

Tsampoula, X.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Turunen, J.

Ushakova, E. E.

E. E. Ushakova and S. N. Kurilkina, “Formation of Bessel light pulses by means of a conical mirror,” J. Appl. Spectrosc. 77, 827–831 (2011).
[CrossRef]

Vaicaitis, V.

V. Vaičaitis and Š. Paulikas, “Formation of Bessel beams with continuously variable cone angle,” Opt. Quantum Electron. 35, 1065–1071 (2003).
[CrossRef]

Vasara, A.

Wallrabe, U.

J. Brunne, M. Bock, A. Treffer, U. Wallrabe, and R. Grunwald, “Adaptive generation of Bessel-like beams by reflective multi-electrode piezo-axicons,” in Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper CF_P14.

Wiggins, T. A.

Winkler, K.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[CrossRef]

Yoshihiko, M.

M. Yoshihiko and H. Makoto, “Micro grooving of metallic material using a Bessel beam,” Rev. Laser Eng. 34, 842–847 (2006).

Youn, S. H.

K. B. Kuntz, B. Braverman, S. H. Youn, M. Lobino, E. M. Pessina, and A. I. Lvovsky, “Spatial and temporal characterization of a Bessel beam produced using a conical mirror,” Phys. Rev. A 79, 043802 (2009).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A 84, 423–430 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

G. Milne, G. D. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

J. Appl. Spectrosc. (1)

E. E. Ushakova and S. N. Kurilkina, “Formation of Bessel light pulses by means of a conical mirror,” J. Appl. Spectrosc. 77, 827–831 (2011).
[CrossRef]

J. Opt. Soc. Am. A (3)

Meas. Sci. Technol. (1)

S. K. Tiwari, S. P. Ram, J. Jayabalan, and S. R. Mishra, “Measuring a narrow Bessel beam spot by scanning charge-coupled device (CCD) pixel,” Meas. Sci. Technol. 21, 025308 (2010).
[CrossRef]

New J. Phys. (1)

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[CrossRef]

Opt. Commun. (3)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[CrossRef]

Opt. Eng. (3)

J. Pu, H. Jhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39, 803–807 (2000).
[CrossRef]

S. K. Tiwari, S. R. Mishra, and S. P. Ram, “Generation of a variable diameter collimated hollow laser beam using metal axicon mirrors,” Opt. Eng. 50, 014001 (2011).
[CrossRef]

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

V. Vaičaitis and Š. Paulikas, “Formation of Bessel beams with continuously variable cone angle,” Opt. Quantum Electron. 35, 1065–1071 (2003).
[CrossRef]

Phys. Rev. A (1)

K. B. Kuntz, B. Braverman, S. H. Youn, M. Lobino, E. M. Pessina, and A. I. Lvovsky, “Spatial and temporal characterization of a Bessel beam produced using a conical mirror,” Phys. Rev. A 79, 043802 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Proc. SPIE (1)

J. F. Fortin, G. Rousseau, N. McCarthy, and M. Piche, “Generation of quasi-Bessel beams and femtosecond optical X-waves with conical mirrors,” Proc. SPIE 4833, 876–884 (2003).
[CrossRef]

Rev. Laser Eng. (1)

M. Yoshihiko and H. Makoto, “Micro grooving of metallic material using a Bessel beam,” Rev. Laser Eng. 34, 842–847 (2006).

Other (1)

J. Brunne, M. Bock, A. Treffer, U. Wallrabe, and R. Grunwald, “Adaptive generation of Bessel-like beams by reflective multi-electrode piezo-axicons,” in Conference on Lasers and Electro-Optics—European Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper CF_P14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for generation of variable spot-size zero-order Bessel beam. AX1, convex axicon mirror; AX2, concave axicon mirror; γ, angle of conical surface for each axicon mirror; d, separation between axicon mirrors; PBS: polarizing beam splitter; λ/4, quarter wave-plate; HB: hollow beam; ϕ, dark diameter of HB; L, focusing lens (plano-convex) of 1000 mm focal length; BB, Bessel beam; θ: angle made by the converging rays with the optical axis.

Fig. 2.
Fig. 2.

(a) Observed CCD image and (b) corresponding transverse intensity profile (along horizontal diameter) of hollow beam at lens plane (z=0) for axicon mirror separation d=90mm.

Fig. 3.
Fig. 3.

(a) Observed CCD image and (b) corresponding transverse intensity profile (along horizontal diameter) of J0-Bessel beam generated in the setup at z=1230mm for a mirror separation of d=90mm. The continuous curve in (b) shows a fit of square of zero order Bessel function to the measured profile.

Fig. 4.
Fig. 4.

Measured variation (filled circles) in FWHM spot size of the generated Bessel beam at z=1150mm with mirror separation d. The hollow circles show the observed variation in dark diameter of the hollow beam at lens plane (z=0).

Fig. 5.
Fig. 5.

Measured variation in FWHM spot size of the generated Bessel beam at z=1150mm with measured dark diameter of hollow beam (at lens plane).

Fig. 6.
Fig. 6.

Measured variation of FWHM spot size and peak CCD counts (i.e., peak intensity) of the generated Bessel beam with z, for different values of mirror separation d. The ring-width parameter w was nearly same (w=0.57mm) for all values of d.

Fig. 7.
Fig. 7.

Observed intensity profiles of the obtained Bessel beams for three different values of ring-width parameter (w) of the hollow beam generated for an axicon mirror separation of d=90mm. The hollow beam parameters for these profiles were (a) w=0.57mm (r0=2.87mm), (b) w=0.97mm (r0=3.41mm), and (c) w=1.29mm (r0=3.62mm).

Fig. 8.
Fig. 8.

Measured variation of FWHM spot size and peak intensity (i.e., peak CCD counts) of central spot of the generated beam with z, for different values of ring-width parameter (w) at a fixed mirror separation d=90mm. The hollow beam parameters for these profiles were (a) w=0.57mm (r0=2.87mm), (b) w=0.97mm (r0=3.41mm), and (c) w=1.29mm (r0=3.62mm).

Fig. 9.
Fig. 9.

Schematic diagram showing various parameters used for calculation of Fresnel integral given by Eq. (1).

Fig. 10.
Fig. 10.

Calculated transverse intensity profiles of the beam generated in the focal region of the lens at different values of axial distance z from the lens. The parameter used in evaluating the Fresnel integral are (a) f=1280mm, β=2.1×106mm3, r0=2.87mm, and w=0.57mm; and (b) f=1280mm, β=2.1×106mm3, r0=3.62mm, and w=1.29mm.

Fig. 11.
Fig. 11.

Calculated variation in peak intensity of the central spot with axial distance z, obtained by solving the Fresnel diffraction integral given by Eq. (1). Solid, dashed, and dotted curves are respectively for hollow beam parameters (r0=2.87mm, w=0.57mm), (r0=3.41mm, w=0.97mm), and (r0=3.62mm, w=1.29mm).

Fig. 12.
Fig. 12.

Calculated variation in FWHM spot size of the central spot with axial distance z, obtained by solving the Fresnel diffraction integral given by Eq. (1). Solid, dashed, and dotted curves are for hollow beam parameters respectively (r0=2.87mm, w=0.57mm), (r0=3.41mm, w=0.97mm), and (r0=3.62mm, w=1.29mm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U(ρ,z)=CU0kiz0t(r)J0(krρz)exp(ikr22z)rdr,
t(r)={A(r)exp[ik(r22f+βr4)],r(R1,R2).0otherwise.
|A(r)|2=exp[2(rr0)2w2],

Metrics