Abstract

Residual amplitude modulation (RAM) mechanisms in electro-optic phase modulators are detrimental in applications that require high purity phase modulation of the incident laser beam. While the origins of RAM are not fully understood, measurements have revealed that it depends on the beam properties of the laser as well as the properties of the medium. Here we present experimental and theoretical results that demonstrate, for the first time, the dependence of RAM production in electro-optic phase modulators on beam intensity. The results show an order of magnitude increase in the level of RAM, around 10 dB, with a fifteenfold enhancement in the input intensity from 12 to 190mW/mm2. We show that this intensity dependent RAM is photorefractive in origin.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [CrossRef]
  2. L.-S. Ma, J. Ye, and J. L. Hall, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” in Proceedings of the 28th Annual Precise Time and Time Inteval (PTTI) Applications and Planning Meeting, L. A. Breakiron, ed. (U. S. Naval Observatory, 1997), pp. 289–303.
  3. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985).
    [CrossRef]
  4. S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B 98, 33–39 (2010).
    [CrossRef]
  5. E. Jaatinen and J.-M. Chartier, “Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm,” Metrologia 35, 75–81 (1998).
    [CrossRef]
  6. F. du Burck and O. Lopez, “Correction of the distortion in frequency modulation spectroscopy,” Meas. Sci. Technol. 15, 1327–1336 (2004).
    [CrossRef]
  7. E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol. 20, 025302 (2009).
    [CrossRef]
  8. E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46, 69–74(2008).
    [CrossRef]
  9. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
    [CrossRef]
  10. C. Ishibashi, J. Ye, and J. L. Hall, “Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM,” in Conference on Quantum Electronics and Laser Science (QELS)Technical Digest Series (Institute of Electrical and Electronics Engineers, 2002), pp. 91–92.
  11. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
    [CrossRef]
  12. F. du Burack, A. Tabet, and O. Lopez, “Frequency-modulated laser beam with highly efficient intensity stabilisation,” Electron. Lett. 41, 188–190 (2005).
    [CrossRef]
  13. F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
    [CrossRef]
  14. R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006).
    [CrossRef]
  15. D. E. Zelmon, D. L. Small, and D. H. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997).
    [CrossRef]
  16. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
    [CrossRef]
  17. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  18. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396(1969).
    [CrossRef]
  19. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiTaO3 as an effective material for nonlinear optics,” Opt. Lett. 23, 1892–1894 (1998).
    [CrossRef]
  20. T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
    [CrossRef]
  21. L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. Pure Appl. Opt. 5, S280–S283 (2003).
    [CrossRef]
  22. G. G. Zong, J. Jian, and Z. K. Wu, "Measurement of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO," in 11th International Quantum Electronics Conference (IEEE, 1980), p. 631.
  23. A. Yariv, Quantum Electronic, 3rd ed. (Wiley, 1989).
  24. I. Turek and N. Tarjányi, “Investigation of symmetry of photorefractive effect in LiNbO3,” Opt. Express 15, 10782–10788 (2007).
    [CrossRef]
  25. J. Schwesyg, M. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
    [CrossRef]
  26. B. Ya Zel’dovich, and V. I. Safonov, “Influence of the photogalvanic effect on the formation of gratings by the phase-locked detection mechanism,” Quantum Electron. 24, 1008–1009 (1994).
    [CrossRef]
  27. S. T. Lin, Y. Y. Lin, T. D. Wang, and Y. C. Huang, “Thermal waveguide OPO,” Opt. Express 18, 1323–1329 (2010).
    [CrossRef]
  28. J. R. Schwesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, “Pyroelectrically induced photorefractive damage in magnesium-doped lithium niobate crystals,” J. Opt. Soc. Am. B 28, 1973–1987 (2011).
    [CrossRef]

2011 (1)

2010 (3)

S. T. Lin, Y. Y. Lin, T. D. Wang, and Y. C. Huang, “Thermal waveguide OPO,” Opt. Express 18, 1323–1329 (2010).
[CrossRef]

J. Schwesyg, M. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[CrossRef]

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B 98, 33–39 (2010).
[CrossRef]

2009 (1)

E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol. 20, 025302 (2009).
[CrossRef]

2008 (1)

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46, 69–74(2008).
[CrossRef]

2007 (1)

2006 (1)

R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006).
[CrossRef]

2005 (1)

F. du Burack, A. Tabet, and O. Lopez, “Frequency-modulated laser beam with highly efficient intensity stabilisation,” Electron. Lett. 41, 188–190 (2005).
[CrossRef]

2004 (1)

F. du Burck and O. Lopez, “Correction of the distortion in frequency modulation spectroscopy,” Meas. Sci. Technol. 15, 1327–1336 (2004).
[CrossRef]

2003 (2)

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
[CrossRef]

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. Pure Appl. Opt. 5, S280–S283 (2003).
[CrossRef]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

1998 (2)

E. Jaatinen and J.-M. Chartier, “Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm,” Metrologia 35, 75–81 (1998).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiTaO3 as an effective material for nonlinear optics,” Opt. Lett. 23, 1892–1894 (1998).
[CrossRef]

1997 (1)

1994 (2)

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

B. Ya Zel’dovich, and V. I. Safonov, “Influence of the photogalvanic effect on the formation of gratings by the phase-locked detection mechanism,” Quantum Electron. 24, 1008–1009 (1994).
[CrossRef]

1985 (3)

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

1969 (1)

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396(1969).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Almasi, G.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. Pure Appl. Opt. 5, S280–S283 (2003).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Back, J.

E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol. 20, 025302 (2009).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Barke, S.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B 98, 33–39 (2010).
[CrossRef]

Bartwal, K. S.

R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006).
[CrossRef]

Bhatt, R.

R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006).
[CrossRef]

Bjorklund, G. C.

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Buse, K.

J. R. Schwesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, “Pyroelectrically induced photorefractive damage in magnesium-doped lithium niobate crystals,” J. Opt. Soc. Am. B 28, 1973–1987 (2011).
[CrossRef]

J. Schwesyg, M. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[CrossRef]

Chartier, J.-M.

E. Jaatinen and J.-M. Chartier, “Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm,” Metrologia 35, 75–81 (1998).
[CrossRef]

Chen, F. S.

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396(1969).
[CrossRef]

Choubey, R. K.

R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006).
[CrossRef]

Danzmann, K.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B 98, 33–39 (2010).
[CrossRef]

du Burack, F.

F. du Burack, A. Tabet, and O. Lopez, “Frequency-modulated laser beam with highly efficient intensity stabilisation,” Electron. Lett. 41, 188–190 (2005).
[CrossRef]

du Burck, F.

F. du Burck and O. Lopez, “Correction of the distortion in frequency modulation spectroscopy,” Meas. Sci. Technol. 15, 1327–1336 (2004).
[CrossRef]

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

El Basri, A.

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
[CrossRef]

Falk, M.

J. R. Schwesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, “Pyroelectrically induced photorefractive damage in magnesium-doped lithium niobate crystals,” J. Opt. Soc. Am. B 28, 1973–1987 (2011).
[CrossRef]

J. Schwesyg, M. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[CrossRef]

Fejer, M.

J. Schwesyg, M. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[CrossRef]

Fejer, M. M.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Furukawa, Y.

Gehrtz, M.

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Hall, J. L.

N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
[CrossRef]

L.-S. Ma, J. Ye, and J. L. Hall, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” in Proceedings of the 28th Annual Precise Time and Time Inteval (PTTI) Applications and Planning Meeting, L. A. Breakiron, ed. (U. S. Naval Observatory, 1997), pp. 289–303.

C. Ishibashi, J. Ye, and J. L. Hall, “Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM,” in Conference on Quantum Electronics and Laser Science (QELS)Technical Digest Series (Institute of Electrical and Electronics Engineers, 2002), pp. 91–92.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Hatano, H.

Hebling, J.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. Pure Appl. Opt. 5, S280–S283 (2003).
[CrossRef]

Heinzel, G.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B 98, 33–39 (2010).
[CrossRef]

Hopper, D. J.

E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol. 20, 025302 (2009).
[CrossRef]

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46, 69–74(2008).
[CrossRef]

Huang, Y. C.

Ishibashi, C.

C. Ishibashi, J. Ye, and J. L. Hall, “Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM,” in Conference on Quantum Electronics and Laser Science (QELS)Technical Digest Series (Institute of Electrical and Electronics Engineers, 2002), pp. 91–92.

Jaatinen, E.

E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol. 20, 025302 (2009).
[CrossRef]

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46, 69–74(2008).
[CrossRef]

E. Jaatinen and J.-M. Chartier, “Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm,” Metrologia 35, 75–81 (1998).
[CrossRef]

Jian, J.

G. G. Zong, J. Jian, and Z. K. Wu, "Measurement of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO," in 11th International Quantum Electronics Conference (IEEE, 1980), p. 631.

Jundt, D.

J. Schwesyg, M. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[CrossRef]

Jundt, D. H.

Kajiyama, M.

J. Schwesyg, M. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[CrossRef]

Kar, S.

R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006).
[CrossRef]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Kitamura, K.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Lin, S. T.

Lin, Y. Y.

Lopez, O.

F. du Burack, A. Tabet, and O. Lopez, “Frequency-modulated laser beam with highly efficient intensity stabilisation,” Electron. Lett. 41, 188–190 (2005).
[CrossRef]

F. du Burck and O. Lopez, “Correction of the distortion in frequency modulation spectroscopy,” Meas. Sci. Technol. 15, 1327–1336 (2004).
[CrossRef]

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
[CrossRef]

Ma, L.-S.

L.-S. Ma, J. Ye, and J. L. Hall, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” in Proceedings of the 28th Annual Precise Time and Time Inteval (PTTI) Applications and Planning Meeting, L. A. Breakiron, ed. (U. S. Naval Observatory, 1997), pp. 289–303.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Niwa, K.

Pálfalvi, L.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. Pure Appl. Opt. 5, S280–S283 (2003).
[CrossRef]

Peter, A.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. Pure Appl. Opt. 5, S280–S283 (2003).
[CrossRef]

Phillips, C. R.

Polgar, K.

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. Pure Appl. Opt. 5, S280–S283 (2003).
[CrossRef]

Rubinina, N.

Safonov, V. I.

B. Ya Zel’dovich, and V. I. Safonov, “Influence of the photogalvanic effect on the formation of gratings by the phase-locked detection mechanism,” Quantum Electron. 24, 1008–1009 (1994).
[CrossRef]

Schwesyg, J.

J. Schwesyg, M. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[CrossRef]

Schwesyg, J. R.

Sen, P.

R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006).
[CrossRef]

Sen, P. K.

R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006).
[CrossRef]

Sheard, B.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B 98, 33–39 (2010).
[CrossRef]

Shukla, V.

R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006).
[CrossRef]

Small, D. L.

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Tabet, A.

F. du Burack, A. Tabet, and O. Lopez, “Frequency-modulated laser beam with highly efficient intensity stabilisation,” Electron. Lett. 41, 188–190 (2005).
[CrossRef]

Takekawa, S.

Tarjányi, N.

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Tröbs, M.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B 98, 33–39 (2010).
[CrossRef]

Turek, I.

Volk, T.

Wang, T. D.

Whittaker, E. A.

Wöhlecke, M.

Wong, N. C.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Wu, Z. K.

G. G. Zong, J. Jian, and Z. K. Wu, "Measurement of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO," in 11th International Quantum Electronics Conference (IEEE, 1980), p. 631.

Ya Zel’dovich, B.

B. Ya Zel’dovich, and V. I. Safonov, “Influence of the photogalvanic effect on the formation of gratings by the phase-locked detection mechanism,” Quantum Electron. 24, 1008–1009 (1994).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronic, 3rd ed. (Wiley, 1989).

Ye, J.

L.-S. Ma, J. Ye, and J. L. Hall, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” in Proceedings of the 28th Annual Precise Time and Time Inteval (PTTI) Applications and Planning Meeting, L. A. Breakiron, ed. (U. S. Naval Observatory, 1997), pp. 289–303.

C. Ishibashi, J. Ye, and J. L. Hall, “Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM,” in Conference on Quantum Electronics and Laser Science (QELS)Technical Digest Series (Institute of Electrical and Electronics Engineers, 2002), pp. 91–92.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Zelmon, D. E.

Zong, G. G.

G. G. Zong, J. Jian, and Z. K. Wu, "Measurement of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO," in 11th International Quantum Electronics Conference (IEEE, 1980), p. 631.

Appl. Phys. B (2)

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B 98, 33–39 (2010).
[CrossRef]

J. Schwesyg, M. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Electron. Lett. (1)

F. du Burack, A. Tabet, and O. Lopez, “Frequency-modulated laser beam with highly efficient intensity stabilisation,” Electron. Lett. 41, 188–190 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
[CrossRef]

J. Appl. Phys. (1)

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396(1969).
[CrossRef]

J. Opt. Pure Appl. Opt. (1)

L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. Pure Appl. Opt. 5, S280–S283 (2003).
[CrossRef]

J. Opt. Soc. Am. B (6)

Meas. Sci. Technol. (2)

F. du Burck and O. Lopez, “Correction of the distortion in frequency modulation spectroscopy,” Meas. Sci. Technol. 15, 1327–1336 (2004).
[CrossRef]

E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol. 20, 025302 (2009).
[CrossRef]

Metrologia (1)

E. Jaatinen and J.-M. Chartier, “Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm,” Metrologia 35, 75–81 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46, 69–74(2008).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (Amsterdam) (1)

R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006).
[CrossRef]

Quantum Electron. (1)

B. Ya Zel’dovich, and V. I. Safonov, “Influence of the photogalvanic effect on the formation of gratings by the phase-locked detection mechanism,” Quantum Electron. 24, 1008–1009 (1994).
[CrossRef]

Other (4)

L.-S. Ma, J. Ye, and J. L. Hall, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” in Proceedings of the 28th Annual Precise Time and Time Inteval (PTTI) Applications and Planning Meeting, L. A. Breakiron, ed. (U. S. Naval Observatory, 1997), pp. 289–303.

C. Ishibashi, J. Ye, and J. L. Hall, “Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM,” in Conference on Quantum Electronics and Laser Science (QELS)Technical Digest Series (Institute of Electrical and Electronics Engineers, 2002), pp. 91–92.

G. G. Zong, J. Jian, and Z. K. Wu, "Measurement of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO," in 11th International Quantum Electronics Conference (IEEE, 1980), p. 631.

A. Yariv, Quantum Electronic, 3rd ed. (Wiley, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for the measurement of RAM. (GTH: Glan-Thompson Polarizer; EOM: Electro-Optic Modulator; PD: Photodetector; CRO: Oscilloscope).

Fig. 2.
Fig. 2.

Level of RAM, RAM as a function of the angle of incidence of the laser beam at the front face of the EOM, for an input intensity of 12mW/mm2.

Fig. 3.
Fig. 3.

RAM levels as a function of the irradiation time for two different input intensities (I) of the laser beam; at 190 and 12mW/mm2.

Fig. 4.
Fig. 4.

Measured magnitude of the RAM noise Fourier component over a frequency range of 10 mHz to 100 Hz.

Fig. 5.
Fig. 5.

Peak to peak variation in transmitted intensity at the modulation frequency, IAC as a function of EOM modulation index.

Fig. 6.
Fig. 6.

Measured peak and average RAM levels as a function of intensity; RAM-pk: peak RAM level and RAM-avg: average RAM level.

Fig. 7.
Fig. 7.

(a) RAM measurements obtained when the EOM was translated over a range of 50 mm on either side of the beam waist location; (b) the calculated average intensity of the field for different EOM positions, and (c) the measured RAM levels as a function of the calculated average intensity.

Fig. 8.
Fig. 8.

Measured RAM levels after the cooling period and before irradiation as a function of intensity.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δn=n3reff2ε.
EPM(t)=E0exp{i[ω0t+βsin(Ωt)]}+c.c,
EPM(t)=E0{J0(β)exp[i(ω0t)]+J1(β)exp[i(ω0+Ω)t]+J1(β)exp[i(ω0Ω)t]}+c.c.
ER(t)=E0{J0(β)T(ω0)exp[i(ω0t)]+J1(β)T(ω0+Ω)exp[i(ω0+Ω)t]+J1(β)T(ω0Ω)exp[i(ω0Ω)t]}+c.c.
IR=E02{J02T(ω0)+2J0J1cos(Ωt)T(ω0)[T(ω0+Ω)T(ω0Ω)]}.
IAC=2J0J1T(ω0)[T(ω0+Ω)T(ω0Ω)]J02T(ω0).
IACβ[T(ω0+Ω)T(ω0Ω)].
RAM=AMPM=[T(ω0+Ω)T(ω0Ω)].
Δn=n3reff2[εA+εSC(I,t)]=n3reff2[εmsin[Ωt]+εSC(I,t)].
Δn=(ΔnMOD+ΔnPR).
ΔnPR=n3reffαIG2(σd+σp).
Δnth=αIw22κdndT,
ΔnPRΔnth=n3reffGκw2(σd+σp)(dn/dT).

Metrics