Abstract

Extinction enhancement and nonlinear near-resonant absorption of potassium polytitanate nanoplatelets were experimentally studied in the near-UV region. Phenomenological models such as the one-oscillator Lorentz model for dielectric function and the two-level model with the depleted ground state were used to interpret the experimental data. The introduced model parameters demonstrate the adequately high sensitivity to variations in nanoplatelet morphology and chemical environment.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [CrossRef]
  2. K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80, 055803 (2009).
    [CrossRef]
  3. R. C. Polson and Z. M. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
    [CrossRef]
  4. K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Quantitative analysis of several random lasers,” Opt. Commun. 278, 110–113 (2007).
    [CrossRef]
  5. M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photon. 5, 615–617 (2011).
    [CrossRef]
  6. C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
    [CrossRef]
  7. Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001).
    [CrossRef]
  8. Y. Kurata, O. Sugihara, T. Kaino, K. Komatsu, and N. Kambe, “Thermo-optic controllable hybrid photonic polymers containing inorganic nanoparticles,” J. Opt. Soc. Am. B 26, 2377–2381 (2009).
    [CrossRef]
  9. S. Colodrero, M. E. Calvo, and H. Míguez, “Photon management in dye sensitized solar cells,” in Solar Energy, R. D. Rugescu, ed. (INTECH, 2010), pp. 413–432.
  10. S. J. Limmer, T. P. Chou, and G. Cao, “Formation and optical properties of cylindrical gold nanoshells on silica and titania nanorods,” J. Phys. Chem. B 107, 13313–13318 (2003).
    [CrossRef]
  11. L. Bechger, A. F. Koenderink, and W. L. Vos, “Emission spectra and lifetimes of R6G dye in silica-coated titania powder,” Langmuir 18, 2444–2447 (2002).
    [CrossRef]
  12. M. P. L. Wertz, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, “Titanium dioxide-polymer core-shell particle dispersions as electronic inks for electrophoretic displays,” Chem. Mater. 20, 1292–1298 (2008).
    [CrossRef]
  13. L. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, and A. W. Weimer, “Nanoparticle coating for advanced optical, mechanical, and rheological properties,” Adv. Funct. Mater. 17, 3175–3181 (2007).
    [CrossRef]
  14. J. Chen, Z. Hua, Y. Yan, A. A. Zakhidov, R. H. Baughman, and L. Xu, “Template synthesis of ordered arrays of mesoporous titania spheres,” Chem. Commun. 46, 1872–1874 (2010).
    [CrossRef]
  15. A. F. Demirörs, A. Jannasch, P. D. J. van Oostrum, E. Schäffer, A. Imhof, and A. van Blaaderen, “Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence,” Langmuir 27, 1626–1634 (2011).
    [CrossRef]
  16. X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
    [CrossRef]
  17. A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,” J. Phys. D 38, 2564–2570 (2005).
    [CrossRef]
  18. S. Sato, and T. Kadowaki, “Photocatalytic activities of metal oxide semiconductors for oxygen isotope exchange and oxidation reactions,” J. Catal. 106, 295–300 (1987).
    [CrossRef]
  19. Z. Peilin, L. Xiangwen, Y. Shu, and S. Tsugio, “Enhanced visible-light photocatalytic activity in K0.81Ti1.73Li0.27O4/TiO2−xNy sandwich-like composite,” Appl. Catal. B Env. 93, 299–303 (2010).
    [CrossRef]
  20. J. Park, “Photocatalytic activity of hydroxyapatite-precipitated potassium titanate whiskers,” J. Alloys Compd. 492, L57–L60 (2010).
    [CrossRef]
  21. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  22. A. Lagendijk, J. G. Rivas, A. Imhof, F. J. P. Schuurmans, and R. Sprik, “Propagation of light in disordered semiconductor materials,” in Proceedings of the NATO ASI Photonic Crystals and Light Localization in the 21st Century (2001), pp. 447–473.
  23. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
    [CrossRef]
  24. M. Feng, H. Zhang, and L. Miao, “Facile solubilization of titanate nanobelts for nonlinear optical investigations,” Nanotechnology 21, 185707 (2010).
    [CrossRef]
  25. K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
    [CrossRef]
  26. R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of BaTiO3 and SrTiO3 nanoparticles,” J. Opt. Soc. Am. B 25, 325–333 (2008).
    [CrossRef]
  27. H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008).
    [CrossRef]
  28. T. Sanchez-Monjaras, A. V. Gorokhovsky, and J. I. Escalante-Garcia, “Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio,” J. Am. Ceram. Soc. 91, 3058–3065 (2008).
    [CrossRef]
  29. T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, “Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate pairwise association of nanosheets and dynamic reassembling process initiated from it,” J. Am. Chem. Soc. 118, 8329–8335 (1996).
    [CrossRef]
  30. T. Nakato, Y. Yamashita, and K. Kuroda, “Mesophase of colloidally dispersed nanosheets prepared by exfoliation of layered titanate and niobate,” Thin Solid Films 495, 24–28 (2006).
    [CrossRef]
  31. R. A. Ganeev and T. Usmanov, “Nonlinear-optical parameters of various media,” Quantum Electron. 37, 605–622 (2007).
    [CrossRef]
  32. K. Fukuda, H. Kato, J. Sato, W. Sugimoto, and Y. Takasu, “Swelling, intercalation and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate,” J. Solid State Chem. 182, 2997–3002 (2009).
    [CrossRef]
  33. B. Xue, H. Li, L. Zhang, and J. Peng, “Electrochromic properties and self-assembled nanoparticle multilayer films,” Thin Solid Films 518, 6107–6112 (2010).
    [CrossRef]
  34. Y. Ide and M. Ogawa, “Preparation and some properties of organically modified layered alkali titanates with alkylmethoxysilanes,” J. Colloid Interf. Sci. 296, 141–149 (2006).
    [CrossRef]
  35. T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
    [CrossRef]
  36. R. Besseling, “Exfoliated nanosheets from lepidocrocite type layered titanates,” master’s thesis (University of Twente, The Netherlands, 2009).
  37. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  38. M. Samos, A. Samos, B. Luther-Davies, H. Reisch, and U. Scherf, “Saturable absorption in poly(indenofluorene): a picket-fence polymer,” Opt. Lett. 23, 1295–1297 (1998).
    [CrossRef]
  39. http://www.ioffe.ru/SVA/NSM/nk/Oxides/Gif/ tio2.gif .

2011 (3)

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photon. 5, 615–617 (2011).
[CrossRef]

A. F. Demirörs, A. Jannasch, P. D. J. van Oostrum, E. Schäffer, A. Imhof, and A. van Blaaderen, “Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence,” Langmuir 27, 1626–1634 (2011).
[CrossRef]

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

2010 (5)

Z. Peilin, L. Xiangwen, Y. Shu, and S. Tsugio, “Enhanced visible-light photocatalytic activity in K0.81Ti1.73Li0.27O4/TiO2−xNy sandwich-like composite,” Appl. Catal. B Env. 93, 299–303 (2010).
[CrossRef]

J. Park, “Photocatalytic activity of hydroxyapatite-precipitated potassium titanate whiskers,” J. Alloys Compd. 492, L57–L60 (2010).
[CrossRef]

M. Feng, H. Zhang, and L. Miao, “Facile solubilization of titanate nanobelts for nonlinear optical investigations,” Nanotechnology 21, 185707 (2010).
[CrossRef]

J. Chen, Z. Hua, Y. Yan, A. A. Zakhidov, R. H. Baughman, and L. Xu, “Template synthesis of ordered arrays of mesoporous titania spheres,” Chem. Commun. 46, 1872–1874 (2010).
[CrossRef]

B. Xue, H. Li, L. Zhang, and J. Peng, “Electrochromic properties and self-assembled nanoparticle multilayer films,” Thin Solid Films 518, 6107–6112 (2010).
[CrossRef]

2009 (4)

Y. Kurata, O. Sugihara, T. Kaino, K. Komatsu, and N. Kambe, “Thermo-optic controllable hybrid photonic polymers containing inorganic nanoparticles,” J. Opt. Soc. Am. B 26, 2377–2381 (2009).
[CrossRef]

K. Fukuda, H. Kato, J. Sato, W. Sugimoto, and Y. Takasu, “Swelling, intercalation and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate,” J. Solid State Chem. 182, 2997–3002 (2009).
[CrossRef]

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[CrossRef]

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80, 055803 (2009).
[CrossRef]

2008 (4)

M. P. L. Wertz, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, “Titanium dioxide-polymer core-shell particle dispersions as electronic inks for electrophoretic displays,” Chem. Mater. 20, 1292–1298 (2008).
[CrossRef]

H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008).
[CrossRef]

T. Sanchez-Monjaras, A. V. Gorokhovsky, and J. I. Escalante-Garcia, “Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio,” J. Am. Ceram. Soc. 91, 3058–3065 (2008).
[CrossRef]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of BaTiO3 and SrTiO3 nanoparticles,” J. Opt. Soc. Am. B 25, 325–333 (2008).
[CrossRef]

2007 (4)

R. A. Ganeev and T. Usmanov, “Nonlinear-optical parameters of various media,” Quantum Electron. 37, 605–622 (2007).
[CrossRef]

L. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, and A. W. Weimer, “Nanoparticle coating for advanced optical, mechanical, and rheological properties,” Adv. Funct. Mater. 17, 3175–3181 (2007).
[CrossRef]

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Quantitative analysis of several random lasers,” Opt. Commun. 278, 110–113 (2007).
[CrossRef]

C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[CrossRef]

2006 (2)

T. Nakato, Y. Yamashita, and K. Kuroda, “Mesophase of colloidally dispersed nanosheets prepared by exfoliation of layered titanate and niobate,” Thin Solid Films 495, 24–28 (2006).
[CrossRef]

Y. Ide and M. Ogawa, “Preparation and some properties of organically modified layered alkali titanates with alkylmethoxysilanes,” J. Colloid Interf. Sci. 296, 141–149 (2006).
[CrossRef]

2005 (2)

R. C. Polson and Z. M. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[CrossRef]

A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,” J. Phys. D 38, 2564–2570 (2005).
[CrossRef]

2003 (1)

S. J. Limmer, T. P. Chou, and G. Cao, “Formation and optical properties of cylindrical gold nanoshells on silica and titania nanorods,” J. Phys. Chem. B 107, 13313–13318 (2003).
[CrossRef]

2002 (1)

L. Bechger, A. F. Koenderink, and W. L. Vos, “Emission spectra and lifetimes of R6G dye in silica-coated titania powder,” Langmuir 18, 2444–2447 (2002).
[CrossRef]

2001 (1)

Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001).
[CrossRef]

1998 (2)

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

M. Samos, A. Samos, B. Luther-Davies, H. Reisch, and U. Scherf, “Saturable absorption in poly(indenofluorene): a picket-fence polymer,” Opt. Lett. 23, 1295–1297 (1998).
[CrossRef]

1997 (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

1996 (1)

T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, “Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate pairwise association of nanosheets and dynamic reassembling process initiated from it,” J. Am. Chem. Soc. 118, 8329–8335 (1996).
[CrossRef]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

1987 (1)

S. Sato, and T. Kadowaki, “Photocatalytic activities of metal oxide semiconductors for oxygen isotope exchange and oxidation reactions,” J. Catal. 106, 295–300 (1987).
[CrossRef]

Baba, M.

Badila, M.

M. P. L. Wertz, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, “Titanium dioxide-polymer core-shell particle dispersions as electronic inks for electrophoretic displays,” Chem. Mater. 20, 1292–1298 (2008).
[CrossRef]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Bando, Y.

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Baughman, R. H.

J. Chen, Z. Hua, Y. Yan, A. A. Zakhidov, R. H. Baughman, and L. Xu, “Template synthesis of ordered arrays of mesoporous titania spheres,” Chem. Commun. 46, 1872–1874 (2010).
[CrossRef]

Bechger, L.

L. Bechger, A. F. Koenderink, and W. L. Vos, “Emission spectra and lifetimes of R6G dye in silica-coated titania powder,” Langmuir 18, 2444–2447 (2002).
[CrossRef]

Besseling, R.

R. Besseling, “Exfoliated nanosheets from lepidocrocite type layered titanates,” master’s thesis (University of Twente, The Netherlands, 2009).

Bohren, C. F.

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Brito-Silva, A. M.

C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[CrossRef]

Brochon, C.

M. P. L. Wertz, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, “Titanium dioxide-polymer core-shell particle dispersions as electronic inks for electrophoretic displays,” Chem. Mater. 20, 1292–1298 (2008).
[CrossRef]

Calvo, M. E.

S. Colodrero, M. E. Calvo, and H. Míguez, “Photon management in dye sensitized solar cells,” in Solar Energy, R. D. Rugescu, ed. (INTECH, 2010), pp. 413–432.

Cao, G.

S. J. Limmer, T. P. Chou, and G. Cao, “Formation and optical properties of cylindrical gold nanoshells on silica and titania nanorods,” J. Phys. Chem. B 107, 13313–13318 (2003).
[CrossRef]

Chakoumakos, B. C.

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

Chen, J.

J. Chen, Z. Hua, Y. Yan, A. A. Zakhidov, R. H. Baughman, and L. Xu, “Template synthesis of ordered arrays of mesoporous titania spheres,” Chem. Commun. 46, 1872–1874 (2010).
[CrossRef]

Cho, Y.-S.

H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008).
[CrossRef]

Chou, T. P.

S. J. Limmer, T. P. Chou, and G. Cao, “Formation and optical properties of cylindrical gold nanoshells on silica and titania nanorods,” J. Phys. Chem. B 107, 13313–13318 (2003).
[CrossRef]

Colodrero, S.

S. Colodrero, M. E. Calvo, and H. Míguez, “Photon management in dye sensitized solar cells,” in Solar Energy, R. D. Rugescu, ed. (INTECH, 2010), pp. 413–432.

Conti, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photon. 5, 615–617 (2011).
[CrossRef]

Couris, S.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[CrossRef]

de, L.

C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[CrossRef]

de Araújo, C. B.

C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[CrossRef]

de Matos, C. J. S.

C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[CrossRef]

Demirörs, A. F.

A. F. Demirörs, A. Jannasch, P. D. J. van Oostrum, E. Schäffer, A. Imhof, and A. van Blaaderen, “Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence,” Langmuir 27, 1626–1634 (2011).
[CrossRef]

Einaga, Y.

Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001).
[CrossRef]

Escalante-Garcia, J. I.

T. Sanchez-Monjaras, A. V. Gorokhovsky, and J. I. Escalante-Garcia, “Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio,” J. Am. Ceram. Soc. 91, 3058–3065 (2008).
[CrossRef]

Feng, M.

M. Feng, H. Zhang, and L. Miao, “Facile solubilization of titanate nanobelts for nonlinear optical investigations,” Nanotechnology 21, 185707 (2010).
[CrossRef]

Fujishima, A.

Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001).
[CrossRef]

Fukuda, K.

K. Fukuda, H. Kato, J. Sato, W. Sugimoto, and Y. Takasu, “Swelling, intercalation and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate,” J. Solid State Chem. 182, 2997–3002 (2009).
[CrossRef]

Gámez, M. A. M.

C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[CrossRef]

Ganeev, R. A.

George, S. M.

L. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, and A. W. Weimer, “Nanoparticle coating for advanced optical, mechanical, and rheological properties,” Adv. Funct. Mater. 17, 3175–3181 (2007).
[CrossRef]

Golberg, D.

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

Gomes, A. S. L.

C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[CrossRef]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Gorokhovsky, A. V.

T. Sanchez-Monjaras, A. V. Gorokhovsky, and J. I. Escalante-Garcia, “Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio,” J. Am. Ceram. Soc. 91, 3058–3065 (2008).
[CrossRef]

Gu, Z.-Z.

Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001).
[CrossRef]

Gump, C. J.

L. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, and A. W. Weimer, “Nanoparticle coating for advanced optical, mechanical, and rheological properties,” Adv. Funct. Mater. 17, 3175–3181 (2007).
[CrossRef]

Hadziioannou, G.

M. P. L. Wertz, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, “Titanium dioxide-polymer core-shell particle dispersions as electronic inks for electrophoretic displays,” Chem. Mater. 20, 1292–1298 (2008).
[CrossRef]

Hakim, L. F.

L. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, and A. W. Weimer, “Nanoparticle coating for advanced optical, mechanical, and rheological properties,” Adv. Funct. Mater. 17, 3175–3181 (2007).
[CrossRef]

Hashizume, H.

T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, “Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate pairwise association of nanosheets and dynamic reassembling process initiated from it,” J. Am. Chem. Soc. 118, 8329–8335 (1996).
[CrossRef]

Hebraud, A.

M. P. L. Wertz, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, “Titanium dioxide-polymer core-shell particle dispersions as electronic inks for electrophoretic displays,” Chem. Mater. 20, 1292–1298 (2008).
[CrossRef]

Hua, Z.

J. Chen, Z. Hua, Y. Yan, A. A. Zakhidov, R. H. Baughman, and L. Xu, “Template synthesis of ordered arrays of mesoporous titania spheres,” Chem. Commun. 46, 1872–1874 (2010).
[CrossRef]

Huffman, D.

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Ichihara, M.

Ide, Y.

Y. Ide and M. Ogawa, “Preparation and some properties of organically modified layered alkali titanates with alkylmethoxysilanes,” J. Colloid Interf. Sci. 296, 141–149 (2006).
[CrossRef]

Iida, M.

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

Iliopoulos, K.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[CrossRef]

Imhof, A.

A. F. Demirörs, A. Jannasch, P. D. J. van Oostrum, E. Schäffer, A. Imhof, and A. van Blaaderen, “Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence,” Langmuir 27, 1626–1634 (2011).
[CrossRef]

A. Lagendijk, J. G. Rivas, A. Imhof, F. J. P. Schuurmans, and R. Sprik, “Propagation of light in disordered semiconductor materials,” in Proceedings of the NATO ASI Photonic Crystals and Light Localization in the 21st Century (2001), pp. 447–473.

Ishikawa, Y.

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Izumi, F.

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

Jannasch, A.

A. F. Demirörs, A. Jannasch, P. D. J. van Oostrum, E. Schäffer, A. Imhof, and A. van Blaaderen, “Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence,” Langmuir 27, 1626–1634 (2011).
[CrossRef]

Kadowaki, T.

S. Sato, and T. Kadowaki, “Photocatalytic activities of metal oxide semiconductors for oxygen isotope exchange and oxidation reactions,” J. Catal. 106, 295–300 (1987).
[CrossRef]

Kaino, T.

Kalogerakis, G.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[CrossRef]

Kambe, N.

Kang, J.-H.

H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008).
[CrossRef]

Kato, H.

K. Fukuda, H. Kato, J. Sato, W. Sugimoto, and Y. Takasu, “Swelling, intercalation and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate,” J. Solid State Chem. 182, 2997–3002 (2009).
[CrossRef]

Katsarakis, N.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[CrossRef]

King, D. M.

L. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, and A. W. Weimer, “Nanoparticle coating for advanced optical, mechanical, and rheological properties,” Adv. Funct. Mater. 17, 3175–3181 (2007).
[CrossRef]

Koenderink, A. F.

L. Bechger, A. F. Koenderink, and W. L. Vos, “Emission spectra and lifetimes of R6G dye in silica-coated titania powder,” Langmuir 18, 2444–2447 (2002).
[CrossRef]

Komatsu, K.

Kooli, F.

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

Koshizaki, N.

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

Koudoumas, E.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[CrossRef]

Kubo, S.

Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001).
[CrossRef]

Kurata, Y.

Kuroda, H.

Kuroda, K.

T. Nakato, Y. Yamashita, and K. Kuroda, “Mesophase of colloidally dispersed nanosheets prepared by exfoliation of layered titanate and niobate,” Thin Solid Films 495, 24–28 (2006).
[CrossRef]

Lademann, J.

A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,” J. Phys. D 38, 2564–2570 (2005).
[CrossRef]

Lagendijk, A.

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80, 055803 (2009).
[CrossRef]

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Quantitative analysis of several random lasers,” Opt. Commun. 278, 110–113 (2007).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

A. Lagendijk, J. G. Rivas, A. Imhof, F. J. P. Schuurmans, and R. Sprik, “Propagation of light in disordered semiconductor materials,” in Proceedings of the NATO ASI Photonic Crystals and Light Localization in the 21st Century (2001), pp. 447–473.

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Leonetti, M.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photon. 5, 615–617 (2011).
[CrossRef]

Li, H.

B. Xue, H. Li, L. Zhang, and J. Peng, “Electrochromic properties and self-assembled nanoparticle multilayer films,” Thin Solid Films 518, 6107–6112 (2010).
[CrossRef]

Li, L.

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

Li, X.

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

Li, Y.

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

Limmer, S. J.

S. J. Limmer, T. P. Chou, and G. Cao, “Formation and optical properties of cylindrical gold nanoshells on silica and titania nanorods,” J. Phys. Chem. B 107, 13313–13318 (2003).
[CrossRef]

Lopez, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photon. 5, 615–617 (2011).
[CrossRef]

Luther-Davies, B.

Manoharan, V. N.

H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008).
[CrossRef]

Menezes, S.

C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[CrossRef]

Miao, L.

M. Feng, H. Zhang, and L. Miao, “Facile solubilization of titanate nanobelts for nonlinear optical investigations,” Nanotechnology 21, 185707 (2010).
[CrossRef]

Michiue, Y.

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

Míguez, H.

S. Colodrero, M. E. Calvo, and H. Míguez, “Photon management in dye sensitized solar cells,” in Solar Energy, R. D. Rugescu, ed. (INTECH, 2010), pp. 413–432.

Miyauchi, M.

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

Mosk, A. P.

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80, 055803 (2009).
[CrossRef]

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Quantitative analysis of several random lasers,” Opt. Commun. 278, 110–113 (2007).
[CrossRef]

Myllylä, R.

A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,” J. Phys. D 38, 2564–2570 (2005).
[CrossRef]

Nakato, T.

T. Nakato, Y. Yamashita, and K. Kuroda, “Mesophase of colloidally dispersed nanosheets prepared by exfoliation of layered titanate and niobate,” Thin Solid Films 495, 24–28 (2006).
[CrossRef]

Nakazawa, H.

T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, “Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate pairwise association of nanosheets and dynamic reassembling process initiated from it,” J. Am. Chem. Soc. 118, 8329–8335 (1996).
[CrossRef]

Ogawa, M.

Y. Ide and M. Ogawa, “Preparation and some properties of organically modified layered alkali titanates with alkylmethoxysilanes,” J. Colloid Interf. Sci. 296, 141–149 (2006).
[CrossRef]

Park, J.

J. Park, “Photocatalytic activity of hydroxyapatite-precipitated potassium titanate whiskers,” J. Alloys Compd. 492, L57–L60 (2010).
[CrossRef]

Peilin, Z.

Z. Peilin, L. Xiangwen, Y. Shu, and S. Tsugio, “Enhanced visible-light photocatalytic activity in K0.81Ti1.73Li0.27O4/TiO2−xNy sandwich-like composite,” Appl. Catal. B Env. 93, 299–303 (2010).
[CrossRef]

Peng, J.

B. Xue, H. Li, L. Zhang, and J. Peng, “Electrochromic properties and self-assembled nanoparticle multilayer films,” Thin Solid Films 518, 6107–6112 (2010).
[CrossRef]

Pine, D. J.

H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008).
[CrossRef]

Polson, R. C.

R. C. Polson and Z. M. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[CrossRef]

Popov, A. P.

A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,” J. Phys. D 38, 2564–2570 (2005).
[CrossRef]

Priezzhev, A. V.

A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,” J. Phys. D 38, 2564–2570 (2005).
[CrossRef]

Pyatenko, A.

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

Quan, W.

Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001).
[CrossRef]

Reisch, H.

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Rivas, J. G.

A. Lagendijk, J. G. Rivas, A. Imhof, F. J. P. Schuurmans, and R. Sprik, “Propagation of light in disordered semiconductor materials,” in Proceedings of the NATO ASI Photonic Crystals and Light Localization in the 21st Century (2001), pp. 447–473.

Samos, A.

Samos, M.

Sanchez-Monjaras, T.

T. Sanchez-Monjaras, A. V. Gorokhovsky, and J. I. Escalante-Garcia, “Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio,” J. Am. Ceram. Soc. 91, 3058–3065 (2008).
[CrossRef]

Sasaki, T.

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, “Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate pairwise association of nanosheets and dynamic reassembling process initiated from it,” J. Am. Chem. Soc. 118, 8329–8335 (1996).
[CrossRef]

Sato, J.

K. Fukuda, H. Kato, J. Sato, W. Sugimoto, and Y. Takasu, “Swelling, intercalation and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate,” J. Solid State Chem. 182, 2997–3002 (2009).
[CrossRef]

Sato, O.

Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001).
[CrossRef]

Sato, S.

S. Sato, and T. Kadowaki, “Photocatalytic activities of metal oxide semiconductors for oxygen isotope exchange and oxidation reactions,” J. Catal. 106, 295–300 (1987).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Schäffer, E.

A. F. Demirörs, A. Jannasch, P. D. J. van Oostrum, E. Schäffer, A. Imhof, and A. van Blaaderen, “Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence,” Langmuir 27, 1626–1634 (2011).
[CrossRef]

Scherf, U.

Schuurmans, F. J. P.

A. Lagendijk, J. G. Rivas, A. Imhof, F. J. P. Schuurmans, and R. Sprik, “Propagation of light in disordered semiconductor materials,” in Proceedings of the NATO ASI Photonic Crystals and Light Localization in the 21st Century (2001), pp. 447–473.

Shu, Y.

Z. Peilin, L. Xiangwen, Y. Shu, and S. Tsugio, “Enhanced visible-light photocatalytic activity in K0.81Ti1.73Li0.27O4/TiO2−xNy sandwich-like composite,” Appl. Catal. B Env. 93, 299–303 (2010).
[CrossRef]

Sprik, R.

A. Lagendijk, J. G. Rivas, A. Imhof, F. J. P. Schuurmans, and R. Sprik, “Propagation of light in disordered semiconductor materials,” in Proceedings of the NATO ASI Photonic Crystals and Light Localization in the 21st Century (2001), pp. 447–473.

Sugihara, O.

Sugimoto, W.

K. Fukuda, H. Kato, J. Sato, W. Sugimoto, and Y. Takasu, “Swelling, intercalation and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate,” J. Solid State Chem. 182, 2997–3002 (2009).
[CrossRef]

Suzuki, M.

Takasu, Y.

K. Fukuda, H. Kato, J. Sato, W. Sugimoto, and Y. Takasu, “Swelling, intercalation and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate,” J. Solid State Chem. 182, 2997–3002 (2009).
[CrossRef]

Takenouchi, S.

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

Tryk, D. A.

Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001).
[CrossRef]

Tsugio, S.

Z. Peilin, L. Xiangwen, Y. Shu, and S. Tsugio, “Enhanced visible-light photocatalytic activity in K0.81Ti1.73Li0.27O4/TiO2−xNy sandwich-like composite,” Appl. Catal. B Env. 93, 299–303 (2010).
[CrossRef]

Usmanov, T.

R. A. Ganeev and T. Usmanov, “Nonlinear-optical parameters of various media,” Quantum Electron. 37, 605–622 (2007).
[CrossRef]

van Blaaderen, A.

A. F. Demirörs, A. Jannasch, P. D. J. van Oostrum, E. Schäffer, A. Imhof, and A. van Blaaderen, “Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence,” Langmuir 27, 1626–1634 (2011).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80, 055803 (2009).
[CrossRef]

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Quantitative analysis of several random lasers,” Opt. Commun. 278, 110–113 (2007).
[CrossRef]

van Oostrum, P. D. J.

A. F. Demirörs, A. Jannasch, P. D. J. van Oostrum, E. Schäffer, A. Imhof, and A. van Blaaderen, “Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence,” Langmuir 27, 1626–1634 (2011).
[CrossRef]

Vardeny, Z. M.

R. C. Polson and Z. M. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[CrossRef]

Vernardou, D.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[CrossRef]

Vos, W. L.

L. Bechger, A. F. Koenderink, and W. L. Vos, “Emission spectra and lifetimes of R6G dye in silica-coated titania powder,” Langmuir 18, 2444–2447 (2002).
[CrossRef]

Wang, X.

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

Watanabe, M.

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, “Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate pairwise association of nanosheets and dynamic reassembling process initiated from it,” J. Am. Chem. Soc. 118, 8329–8335 (1996).
[CrossRef]

Weimer, A. W.

L. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, and A. W. Weimer, “Nanoparticle coating for advanced optical, mechanical, and rheological properties,” Adv. Funct. Mater. 17, 3175–3181 (2007).
[CrossRef]

Wertz, M. P. L.

M. P. L. Wertz, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, “Titanium dioxide-polymer core-shell particle dispersions as electronic inks for electrophoretic displays,” Chem. Mater. 20, 1292–1298 (2008).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Xiangwen, L.

Z. Peilin, L. Xiangwen, Y. Shu, and S. Tsugio, “Enhanced visible-light photocatalytic activity in K0.81Ti1.73Li0.27O4/TiO2−xNy sandwich-like composite,” Appl. Catal. B Env. 93, 299–303 (2010).
[CrossRef]

Xu, L.

J. Chen, Z. Hua, Y. Yan, A. A. Zakhidov, R. H. Baughman, and L. Xu, “Template synthesis of ordered arrays of mesoporous titania spheres,” Chem. Commun. 46, 1872–1874 (2010).
[CrossRef]

Xue, B.

B. Xue, H. Li, L. Zhang, and J. Peng, “Electrochromic properties and self-assembled nanoparticle multilayer films,” Thin Solid Films 518, 6107–6112 (2010).
[CrossRef]

Yajima, Y.

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

Yamada, H.

T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, “Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate pairwise association of nanosheets and dynamic reassembling process initiated from it,” J. Am. Chem. Soc. 118, 8329–8335 (1996).
[CrossRef]

Yamashita, Y.

T. Nakato, Y. Yamashita, and K. Kuroda, “Mesophase of colloidally dispersed nanosheets prepared by exfoliation of layered titanate and niobate,” Thin Solid Films 495, 24–28 (2006).
[CrossRef]

Yan, Y.

J. Chen, Z. Hua, Y. Yan, A. A. Zakhidov, R. H. Baughman, and L. Xu, “Template synthesis of ordered arrays of mesoporous titania spheres,” Chem. Commun. 46, 1872–1874 (2010).
[CrossRef]

Yang, S.-M.

H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008).
[CrossRef]

Yi, G.-R.

H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008).
[CrossRef]

Yu, H. K.

H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008).
[CrossRef]

Zakhidov, A. A.

J. Chen, Z. Hua, Y. Yan, A. A. Zakhidov, R. H. Baughman, and L. Xu, “Template synthesis of ordered arrays of mesoporous titania spheres,” Chem. Commun. 46, 1872–1874 (2010).
[CrossRef]

Zhang, H.

M. Feng, H. Zhang, and L. Miao, “Facile solubilization of titanate nanobelts for nonlinear optical investigations,” Nanotechnology 21, 185707 (2010).
[CrossRef]

Zhang, L.

B. Xue, H. Li, L. Zhang, and J. Peng, “Electrochromic properties and self-assembled nanoparticle multilayer films,” Thin Solid Films 518, 6107–6112 (2010).
[CrossRef]

Zhou, Y.

L. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, and A. W. Weimer, “Nanoparticle coating for advanced optical, mechanical, and rheological properties,” Adv. Funct. Mater. 17, 3175–3181 (2007).
[CrossRef]

Adv. Funct. Mater. (1)

L. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, and A. W. Weimer, “Nanoparticle coating for advanced optical, mechanical, and rheological properties,” Adv. Funct. Mater. 17, 3175–3181 (2007).
[CrossRef]

Appl. Catal. B Env. (1)

Z. Peilin, L. Xiangwen, Y. Shu, and S. Tsugio, “Enhanced visible-light photocatalytic activity in K0.81Ti1.73Li0.27O4/TiO2−xNy sandwich-like composite,” Appl. Catal. B Env. 93, 299–303 (2010).
[CrossRef]

Chem. Commun. (1)

J. Chen, Z. Hua, Y. Yan, A. A. Zakhidov, R. H. Baughman, and L. Xu, “Template synthesis of ordered arrays of mesoporous titania spheres,” Chem. Commun. 46, 1872–1874 (2010).
[CrossRef]

Chem. Mater. (3)

M. P. L. Wertz, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, “Titanium dioxide-polymer core-shell particle dispersions as electronic inks for electrophoretic displays,” Chem. Mater. 20, 1292–1298 (2008).
[CrossRef]

H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008).
[CrossRef]

T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998).
[CrossRef]

J. Alloys Compd. (1)

J. Park, “Photocatalytic activity of hydroxyapatite-precipitated potassium titanate whiskers,” J. Alloys Compd. 492, L57–L60 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

T. Sanchez-Monjaras, A. V. Gorokhovsky, and J. I. Escalante-Garcia, “Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio,” J. Am. Ceram. Soc. 91, 3058–3065 (2008).
[CrossRef]

J. Am. Chem. Soc. (2)

T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, “Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate pairwise association of nanosheets and dynamic reassembling process initiated from it,” J. Am. Chem. Soc. 118, 8329–8335 (1996).
[CrossRef]

X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011).
[CrossRef]

J. Catal. (1)

S. Sato, and T. Kadowaki, “Photocatalytic activities of metal oxide semiconductors for oxygen isotope exchange and oxidation reactions,” J. Catal. 106, 295–300 (1987).
[CrossRef]

J. Colloid Interf. Sci. (1)

Y. Ide and M. Ogawa, “Preparation and some properties of organically modified layered alkali titanates with alkylmethoxysilanes,” J. Colloid Interf. Sci. 296, 141–149 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

S. J. Limmer, T. P. Chou, and G. Cao, “Formation and optical properties of cylindrical gold nanoshells on silica and titania nanorods,” J. Phys. Chem. B 107, 13313–13318 (2003).
[CrossRef]

J. Phys. D (1)

A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,” J. Phys. D 38, 2564–2570 (2005).
[CrossRef]

J. Solid State Chem. (1)

K. Fukuda, H. Kato, J. Sato, W. Sugimoto, and Y. Takasu, “Swelling, intercalation and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate,” J. Solid State Chem. 182, 2997–3002 (2009).
[CrossRef]

Langmuir (3)

Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001).
[CrossRef]

A. F. Demirörs, A. Jannasch, P. D. J. van Oostrum, E. Schäffer, A. Imhof, and A. van Blaaderen, “Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence,” Langmuir 27, 1626–1634 (2011).
[CrossRef]

L. Bechger, A. F. Koenderink, and W. L. Vos, “Emission spectra and lifetimes of R6G dye in silica-coated titania powder,” Langmuir 18, 2444–2447 (2002).
[CrossRef]

Nanotechnology (1)

M. Feng, H. Zhang, and L. Miao, “Facile solubilization of titanate nanobelts for nonlinear optical investigations,” Nanotechnology 21, 185707 (2010).
[CrossRef]

Nat. Photon. (1)

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photon. 5, 615–617 (2011).
[CrossRef]

Nature (2)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Opt. Commun. (1)

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Quantitative analysis of several random lasers,” Opt. Commun. 278, 110–113 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80, 055803 (2009).
[CrossRef]

Phys. Rev. B (1)

R. C. Polson and Z. M. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[CrossRef]

Quantum Electron. (1)

R. A. Ganeev and T. Usmanov, “Nonlinear-optical parameters of various media,” Quantum Electron. 37, 605–622 (2007).
[CrossRef]

Thin Solid Films (3)

T. Nakato, Y. Yamashita, and K. Kuroda, “Mesophase of colloidally dispersed nanosheets prepared by exfoliation of layered titanate and niobate,” Thin Solid Films 495, 24–28 (2006).
[CrossRef]

B. Xue, H. Li, L. Zhang, and J. Peng, “Electrochromic properties and self-assembled nanoparticle multilayer films,” Thin Solid Films 518, 6107–6112 (2010).
[CrossRef]

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[CrossRef]

Other (6)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

A. Lagendijk, J. G. Rivas, A. Imhof, F. J. P. Schuurmans, and R. Sprik, “Propagation of light in disordered semiconductor materials,” in Proceedings of the NATO ASI Photonic Crystals and Light Localization in the 21st Century (2001), pp. 447–473.

S. Colodrero, M. E. Calvo, and H. Míguez, “Photon management in dye sensitized solar cells,” in Solar Energy, R. D. Rugescu, ed. (INTECH, 2010), pp. 413–432.

R. Besseling, “Exfoliated nanosheets from lepidocrocite type layered titanates,” master’s thesis (University of Twente, The Netherlands, 2009).

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

http://www.ioffe.ru/SVA/NSM/nk/Oxides/Gif/ tio2.gif .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transmission electron microscopic image of (a) an arbitrarily chosen HPT nanoplatelet and (b) particle size distribution for the basic HPT particles and the particles treated with aqueous solutions of LS and EAP surfactants. The gradual enhancement of the image density from an edge to a central part of a platelet corresponds to the stepwise increase in the number of atomic layers, which form the HPT structure (a). Peaks below 1 μm correspond to the single platelets, whereas the broad feature in the HPT dependence, which is centered at 1.3μm, corresponds to platelet aggregates in HPT-NP aqueous suspension without surfactants. This broad peak rapidly disappears (for 10 to 15 h after preparation of a suspension) due to aggregate sedimentation (b).

Fig. 2.
Fig. 2.

Extinction spectra of aqueous suspensions of HPT nanoplatelets; the time lapse after preparation of suspensions is 24 h. 1—HPT-NP suspension in the EAP aqueous solution (nonionic surfactant); 2—HPT-NP suspension in the lauryl sulfate aqueous solution (anionic surfactant); 3—HPT-NP aqueous suspension. Markers and indicate the positions of surface-mode-induced extinction peaks. Inset: The electric field orientations in an incident electromagnetic wave corresponding to the Fröhlich mode excitation described by Eq. (4).

Fig. 3.
Fig. 3.

Nonlinear optical response of HPT-NP aqueous suspensions at 337 nm measured with the open-aperture Z-scan technique. 1—HPT-NP dispersed in the EAP (nonionic surfactant) aqueous solution; 2—HPT-NP dispersed in the LS (anionic surfactant) aqueous solution. The time lapse after preparation of the samples is 72 h. The intensity values obtained far from the focal plane were used for normalization of the transmittance data.

Fig. 4.
Fig. 4.

Results of the experimental data (Fig. 4, data set #1) fit with a two-level model with depleted ground state.

Fig. 5.
Fig. 5.

Calculated ratio of absorption cross section to extinction cross section at 337 nm for the disklike particles versus the particle volume. The underlined regions indicate the expected range for the HPT nanoplatelets examined.

Tables (1)

Tables Icon

Table 1. Positions of and Frequency Gaps between the Registered Extinction Peaks (see Caption to Fig. 2 for Sample Identification)

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

L3L1=L2=L,L3=12L1.
Csca=k418π(|α1|2+|α2|2+|α3|2),Cabs=k3Im(α1+α2+α3).
αi=4πabcεεm3εm3Li(εεm),i=1,2,3,
ε=εm(11L);ε=εm(2L2L1),
εεm(2L12L+Kx2),
εrel1+{ωp2(ω0ω)/2ω0}/{(ω0ω)2+(γ/2)2},
Δω=ωF2ωF1(ωp2/2ω0)2γ2,
dNdt=σIhν(NgN)Nτ,
μa=σ(NgN)=μa01+I/Isat,
μt=μt,depl+Δμa1+(I/Isat)β,
Δμaμt0εrel,337εrel,337+k3υ6π|εrel,3371|2,

Metrics