Abstract

Stokes shift spectroscopy (S3) is an emerging approach toward cancer detection. The goal of this paper is to evaluate the diagnostic potential of the S3 technique for the detection and characterization of normal and cancerous prostate tissues. Pairs of cancerous and normal prostate tissue samples were taken from each of eight patients. Stokes shift spectra were measured by simultaneously scanning both the excitation and emission wavelengths while keeping a fixed wavelength interval Δλ=20nm between them. The salient features of this technique are the highly resolved emission peaks and significant spectral differences between the normal and cancerous prostate tissues, as observed in the wavelength region of 250 to 600 nm. The Stokes shift spectra of cancerous and normal prostate tissues revealed distinct peaks around 300, 345, 440, and 510 nm, which are attributed to tryptophan, collagen, NADH, and flavin, respectively. To quantify the spectral differences between the normal and cancerous prostate tissues, two spectral ratios were computed. The findings revealed that both ratio parameters R1=I297/I345 and R2=I307/I345 were excellent diagnostic ratio parameters giving 100% specificity and 100% sensitivity for distinguishing cancerous tissue from the normal tissue. Our results demonstrate that S3 is a sensitive and specific technique for detecting cancerous prostate tissue.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. American Cancer Society, Cancer Facts and Figures (American Cancer Society, 2009).
  2. L. V. Rodriguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160, 2115–2120 (1998).
  3. R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
    [CrossRef]
  4. R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
    [CrossRef]
  5. W. Zheng, W. Lau, C. Christopher, K. C. Soo, and M. Oliva, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104, 477–481 (2003).
  6. Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, “UV reflectance spectroscopy probes DNA and protein changes in human breast tissues,” J. Clin. Laser Med. Surg. 19, 35–39 (2001).
    [CrossRef]
  7. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Trans. Biomed. Eng. 50, 1233–1242 (2003).
    [CrossRef]
  8. Y. Pu, W. Wang, G. Tang, and R. R. Alfano, “Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studies using native fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
    [CrossRef]
  9. C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).
    [CrossRef]
  10. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
  11. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
    [CrossRef]
  12. D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
    [CrossRef]
  13. L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000).
    [CrossRef]
  14. S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165–181 (2006).
    [CrossRef]
  15. Y. Yang, E. J. Celmer, M. J. Szczepaniak, and R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1996).
  16. R. R. Alfano and Y. Yang, “Stokes shift emission spectroscopy of human tissue and key biomolecules,” IEEE J. Quantum Electron. 9, 148–153 (2003).
    [CrossRef]
  17. T. Vo-Dinh, “Multicomponent analysis by synchronous luminescence luminescence spectrometry,” Anal. Chem. 50, 396–401 (1978).
    [CrossRef]
  18. J. Ebenezar, P. Aruna, and S. Ganesan, “Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro,” Photochem. Photobiol. 86, 77–86 (2010).
    [CrossRef]
  19. J. Ebenezar, P. Aruna, and S. Ganesan, “Stokes shift spectroscopy for breast cancer diagnosis,” Proc. SPIE 7561, 75610B (2010).
  20. V. Masilamani, D. Rabah, M. Alsalhi, V. Trinka, and P. Vijayaraghavan, “Spectra discrimination of benign and malignant prostate tissues: a preliminary report,” Photochem. Photobiol. 87, 208–214 (2011).
    [CrossRef]
  21. R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy,” Photochem. Photobiol. 78, 384–392 (2003).
    [CrossRef]
  22. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples: NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254, 4764–4771(1971).
  23. D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005).
    [CrossRef]
  24. D. Theodorescu and T.L. Krupski, “Prostate cancer diagnosis and staging,” Medscape Reference, http://emedicine.medscape.com/article/458011-overview(2009) .
  25. D. L. Heintzelman, R. Lotan, and R. Richards-Kortum, “Characterization of autofluorescence of polymorphonuclear leukocytes, mononuclear leukocytes and cervical epithelial cancer cells for improved spectroscopic discrimination of inflammation from dysplasia,” Photochem. Photobiol. 71, 327–332 (2000).
    [CrossRef]
  26. J. R. Lackowicz, Principles of Fluorescence Spectroscopy (Plenum, 1983).
  27. D. Parmeswarn, S. Ganesan, R. Nalini, P. Aruna, V. Veeraganesh, and R. R. Alfano, “Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx,” Proc. SPIE 2979, 759–764 (1997).
    [CrossRef]
  28. J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
    [CrossRef]
  29. A. S. Ladokhin, “Fluorescence spectroscopy in peptide and protein analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 5762–5779.
  30. C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).
  31. D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging,” J. Urol. 111, 58–64 (1974).
  32. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
    [CrossRef]
  33. M. M. Sholley, G. P. Ferguson, and H. R. Seibel, “Mechanisms of neovascularization: vascular sprouting can occur without proliferation of endothelial cells,” Lab. Invest. 51, 624–634 (1984).
  34. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
    [CrossRef]

2011

V. Masilamani, D. Rabah, M. Alsalhi, V. Trinka, and P. Vijayaraghavan, “Spectra discrimination of benign and malignant prostate tissues: a preliminary report,” Photochem. Photobiol. 87, 208–214 (2011).
[CrossRef]

2010

J. Ebenezar, P. Aruna, and S. Ganesan, “Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro,” Photochem. Photobiol. 86, 77–86 (2010).
[CrossRef]

J. Ebenezar, P. Aruna, and S. Ganesan, “Stokes shift spectroscopy for breast cancer diagnosis,” Proc. SPIE 7561, 75610B (2010).

Y. Pu, W. Wang, G. Tang, and R. R. Alfano, “Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studies using native fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

2008

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

2006

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165–181 (2006).
[CrossRef]

2005

D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005).
[CrossRef]

2004

D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
[CrossRef]

2003

R. R. Alfano and Y. Yang, “Stokes shift emission spectroscopy of human tissue and key biomolecules,” IEEE J. Quantum Electron. 9, 148–153 (2003).
[CrossRef]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Trans. Biomed. Eng. 50, 1233–1242 (2003).
[CrossRef]

W. Zheng, W. Lau, C. Christopher, K. C. Soo, and M. Oliva, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104, 477–481 (2003).

R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy,” Photochem. Photobiol. 78, 384–392 (2003).
[CrossRef]

2002

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

2001

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, “UV reflectance spectroscopy probes DNA and protein changes in human breast tissues,” J. Clin. Laser Med. Surg. 19, 35–39 (2001).
[CrossRef]

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[CrossRef]

2000

C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).

D. L. Heintzelman, R. Lotan, and R. Richards-Kortum, “Characterization of autofluorescence of polymorphonuclear leukocytes, mononuclear leukocytes and cervical epithelial cancer cells for improved spectroscopic discrimination of inflammation from dysplasia,” Photochem. Photobiol. 71, 327–332 (2000).
[CrossRef]

C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).
[CrossRef]

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000).
[CrossRef]

1998

L. V. Rodriguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160, 2115–2120 (1998).

1997

D. Parmeswarn, S. Ganesan, R. Nalini, P. Aruna, V. Veeraganesh, and R. R. Alfano, “Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx,” Proc. SPIE 2979, 759–764 (1997).
[CrossRef]

1996

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef]

Y. Yang, E. J. Celmer, M. J. Szczepaniak, and R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1996).

1987

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

1984

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

M. M. Sholley, G. P. Ferguson, and H. R. Seibel, “Mechanisms of neovascularization: vascular sprouting can occur without proliferation of endothelial cells,” Lab. Invest. 51, 624–634 (1984).

1978

T. Vo-Dinh, “Multicomponent analysis by synchronous luminescence luminescence spectrometry,” Anal. Chem. 50, 396–401 (1978).
[CrossRef]

1974

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging,” J. Urol. 111, 58–64 (1974).

1971

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples: NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254, 4764–4771(1971).

Agati, G.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000).
[CrossRef]

Alfano, M.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Alfano, R. R.

Y. Pu, W. Wang, G. Tang, and R. R. Alfano, “Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studies using native fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

R. R. Alfano and Y. Yang, “Stokes shift emission spectroscopy of human tissue and key biomolecules,” IEEE J. Quantum Electron. 9, 148–153 (2003).
[CrossRef]

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, “UV reflectance spectroscopy probes DNA and protein changes in human breast tissues,” J. Clin. Laser Med. Surg. 19, 35–39 (2001).
[CrossRef]

D. Parmeswarn, S. Ganesan, R. Nalini, P. Aruna, V. Veeraganesh, and R. R. Alfano, “Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx,” Proc. SPIE 2979, 759–764 (1997).
[CrossRef]

Y. Yang, E. J. Celmer, M. J. Szczepaniak, and R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1996).

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Alsalhi, M.

V. Masilamani, D. Rabah, M. Alsalhi, V. Trinka, and P. Vijayaraghavan, “Spectra discrimination of benign and malignant prostate tissues: a preliminary report,” Photochem. Photobiol. 87, 208–214 (2011).
[CrossRef]

Alterini, R.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000).
[CrossRef]

Andersson, H.

R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy,” Photochem. Photobiol. 78, 384–392 (2003).
[CrossRef]

Aruna, P.

J. Ebenezar, P. Aruna, and S. Ganesan, “Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro,” Photochem. Photobiol. 86, 77–86 (2010).
[CrossRef]

J. Ebenezar, P. Aruna, and S. Ganesan, “Stokes shift spectroscopy for breast cancer diagnosis,” Proc. SPIE 7561, 75610B (2010).

D. Parmeswarn, S. Ganesan, R. Nalini, P. Aruna, V. Veeraganesh, and R. R. Alfano, “Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx,” Proc. SPIE 2979, 759–764 (1997).
[CrossRef]

Badizadegan, K.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

Bakker Schut, T. C.

D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005).
[CrossRef]

Bechtel, K. L.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

Bernabei, P. A.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000).
[CrossRef]

Boiko, I.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[CrossRef]

Boone, C. W.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

Breslin, T. M.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Trans. Biomed. Eng. 50, 1233–1242 (2003).
[CrossRef]

Carr-Locke, D. L.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

Celmer, E. J.

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, “UV reflectance spectroscopy probes DNA and protein changes in human breast tissues,” J. Clin. Laser Med. Surg. 19, 35–39 (2001).
[CrossRef]

Y. Yang, E. J. Celmer, M. J. Szczepaniak, and R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1996).

Chance, B.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples: NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254, 4764–4771(1971).

Choy, D. J.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Christopher, C.

W. Zheng, W. Lau, C. Christopher, K. C. Soo, and M. Oliva, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104, 477–481 (2003).

Cordero, J.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Crum, C. P.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

DaCosta, R. S.

R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy,” Photochem. Photobiol. 78, 384–392 (2003).
[CrossRef]

Dasari, R. R.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

De Veld, D. C. G.

D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005).
[CrossRef]

D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
[CrossRef]

Demos, S. G.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165–181 (2006).
[CrossRef]

Dmitrovsky, E.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef]

Dragnev, K. H.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef]

Drezek, R.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[CrossRef]

Duin, R. P. W.

D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
[CrossRef]

Ebenezar, J.

J. Ebenezar, P. Aruna, and S. Ganesan, “Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro,” Photochem. Photobiol. 86, 77–86 (2010).
[CrossRef]

J. Ebenezar, P. Aruna, and S. Ganesan, “Stokes shift spectroscopy for breast cancer diagnosis,” Proc. SPIE 7561, 75610B (2010).

Feld, M. S.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

Ferguson, G. P.

M. M. Sholley, G. P. Ferguson, and H. R. Seibel, “Mechanisms of neovascularization: vascular sprouting can occur without proliferation of endothelial cells,” Lab. Invest. 51, 624–634 (1984).

Ferrini, P. R.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000).
[CrossRef]

Fitzmaurice, M.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

Follen, M.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[CrossRef]

Fusi, F.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000).
[CrossRef]

Gaffney, E.

C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).

C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).
[CrossRef]

Gandjbakhche, A. H.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165–181 (2006).
[CrossRef]

Ganesan, S.

J. Ebenezar, P. Aruna, and S. Ganesan, “Stokes shift spectroscopy for breast cancer diagnosis,” Proc. SPIE 7561, 75610B (2010).

J. Ebenezar, P. Aruna, and S. Ganesan, “Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro,” Photochem. Photobiol. 86, 77–86 (2010).
[CrossRef]

D. Parmeswarn, S. Ganesan, R. Nalini, P. Aruna, V. Veeraganesh, and R. R. Alfano, “Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx,” Proc. SPIE 2979, 759–764 (1997).
[CrossRef]

Georgakoudi, I.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

Gilchrist, K. W.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Trans. Biomed. Eng. 50, 1233–1242 (2003).
[CrossRef]

Gleason, D. F.

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging,” J. Urol. 111, 58–64 (1974).

Haka, A. S.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

Heintzelman, D. L.

D. L. Heintzelman, R. Lotan, and R. Richards-Kortum, “Characterization of autofluorescence of polymorphonuclear leukocytes, mononuclear leukocytes and cervical epithelial cancer cells for improved spectroscopic discrimination of inflammation from dysplasia,” Photochem. Photobiol. 71, 327–332 (2000).
[CrossRef]

Itshak, F.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples: NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254, 4764–4771(1971).

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

Koutcher, J. A.

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, “UV reflectance spectroscopy probes DNA and protein changes in human breast tissues,” J. Clin. Laser Med. Surg. 19, 35–39 (2001).
[CrossRef]

Lackowicz, J. R.

J. R. Lackowicz, Principles of Fluorescence Spectroscopy (Plenum, 1983).

Ladokhin, A. S.

A. S. Ladokhin, “Fluorescence spectroscopy in peptide and protein analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 5762–5779.

Lam, W.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Lau, W.

W. Zheng, W. Lau, C. Christopher, K. C. Soo, and M. Oliva, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104, 477–481 (2003).

Longo, F.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Lotan, R.

D. L. Heintzelman, R. Lotan, and R. Richards-Kortum, “Characterization of autofluorescence of polymorphonuclear leukocytes, mononuclear leukocytes and cervical epithelial cancer cells for improved spectroscopic discrimination of inflammation from dysplasia,” Photochem. Photobiol. 71, 327–332 (2000).
[CrossRef]

Malpica, A.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[CrossRef]

Masilamani, V.

V. Masilamani, D. Rabah, M. Alsalhi, V. Trinka, and P. Vijayaraghavan, “Spectra discrimination of benign and malignant prostate tissues: a preliminary report,” Photochem. Photobiol. 87, 208–214 (2011).
[CrossRef]

Mellinger, G. T.

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging,” J. Urol. 111, 58–64 (1974).

Monici, M.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000).
[CrossRef]

Morrison, C.

C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).

C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).
[CrossRef]

Muller, M. G.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

Mycek, M. A.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef]

Nakase, Y.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples: NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254, 4764–4771(1971).

Nalini, R.

D. Parmeswarn, S. Ganesan, R. Nalini, P. Aruna, V. Veeraganesh, and R. R. Alfano, “Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx,” Proc. SPIE 2979, 759–764 (1997).
[CrossRef]

Nazemi, J.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

Oliva, M.

W. Zheng, W. Lau, C. Christopher, K. C. Soo, and M. Oliva, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104, 477–481 (2003).

Opher, E.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Oshino, R.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples: NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254, 4764–4771(1971).

Palmer, G. M.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Trans. Biomed. Eng. 50, 1233–1242 (2003).
[CrossRef]

Parmeswarn, D.

D. Parmeswarn, S. Ganesan, R. Nalini, P. Aruna, V. Veeraganesh, and R. R. Alfano, “Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx,” Proc. SPIE 2979, 759–764 (1997).
[CrossRef]

Pitts, J. D.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef]

Pradhan, A.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Pu, Y.

Y. Pu, W. Wang, G. Tang, and R. R. Alfano, “Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studies using native fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

Rabah, D.

V. Masilamani, D. Rabah, M. Alsalhi, V. Trinka, and P. Vijayaraghavan, “Spectra discrimination of benign and malignant prostate tissues: a preliminary report,” Photochem. Photobiol. 87, 208–214 (2011).
[CrossRef]

Ramanujam, N.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Trans. Biomed. Eng. 50, 1233–1242 (2003).
[CrossRef]

Richards-Kortum, R.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[CrossRef]

D. L. Heintzelman, R. Lotan, and R. Richards-Kortum, “Characterization of autofluorescence of polymorphonuclear leukocytes, mononuclear leukocytes and cervical epithelial cancer cells for improved spectroscopic discrimination of inflammation from dysplasia,” Photochem. Photobiol. 71, 327–332 (2000).
[CrossRef]

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef]

Rigacci, L.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000).
[CrossRef]

Rodriguez, L. V.

L. V. Rodriguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160, 2115–2120 (1998).

Roodenburg, J. L.

D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
[CrossRef]

Roodenburg, J. L. N.

D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005).
[CrossRef]

Schoener, B.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples: NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254, 4764–4771(1971).

Seibel, H. R.

M. M. Sholley, G. P. Ferguson, and H. R. Seibel, “Mechanisms of neovascularization: vascular sprouting can occur without proliferation of endothelial cells,” Lab. Invest. 51, 624–634 (1984).

Sevick-Muraca, E.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef]

Sheets, E. E.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

Shenk, R.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

Sholley, M. M.

M. M. Sholley, G. P. Ferguson, and H. R. Seibel, “Mechanisms of neovascularization: vascular sprouting can occur without proliferation of endothelial cells,” Lab. Invest. 51, 624–634 (1984).

Skurichina, M.

D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005).
[CrossRef]

D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
[CrossRef]

Sloboda, R. D.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef]

Sokolov, K.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[CrossRef]

Soo, K. C.

W. Zheng, W. Lau, C. Christopher, K. C. Soo, and M. Oliva, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104, 477–481 (2003).

Star, W. M.

D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
[CrossRef]

Sterenborg, H. J. C. M.

D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005).
[CrossRef]

D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
[CrossRef]

Szczepaniak, M. J.

Y. Yang, E. J. Celmer, M. J. Szczepaniak, and R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1996).

Tang, G.

Y. Pu, W. Wang, G. Tang, and R. R. Alfano, “Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studies using native fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

Tang, G. C.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Tata, D.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Terris, M. K.

L. V. Rodriguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160, 2115–2120 (1998).

Thornhill, J.

C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).
[CrossRef]

C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).

Tomashefsky, P.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Trinka, V.

V. Masilamani, D. Rabah, M. Alsalhi, V. Trinka, and P. Vijayaraghavan, “Spectra discrimination of benign and malignant prostate tissues: a preliminary report,” Photochem. Photobiol. 87, 208–214 (2011).
[CrossRef]

Utzinger, U.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[CrossRef]

Van Dam, J.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

Van der Wal, J. E.

D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005).
[CrossRef]

Veeraganesh, V.

D. Parmeswarn, S. Ganesan, R. Nalini, P. Aruna, V. Veeraganesh, and R. R. Alfano, “Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx,” Proc. SPIE 2979, 759–764 (1997).
[CrossRef]

Vijayaraghavan, P.

V. Masilamani, D. Rabah, M. Alsalhi, V. Trinka, and P. Vijayaraghavan, “Spectra discrimination of benign and malignant prostate tissues: a preliminary report,” Photochem. Photobiol. 87, 208–214 (2011).
[CrossRef]

Vo-Dinh, T.

T. Vo-Dinh, “Multicomponent analysis by synchronous luminescence luminescence spectrometry,” Anal. Chem. 50, 396–401 (1978).
[CrossRef]

Vogel, A. J.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165–181 (2006).
[CrossRef]

Volynskaya, Z.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

Wang, N.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

Wang, W.

Y. Pu, W. Wang, G. Tang, and R. R. Alfano, “Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studies using native fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

Wilson, B. C.

R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy,” Photochem. Photobiol. 78, 384–392 (2003).
[CrossRef]

Witjes, M. J. H.

D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005).
[CrossRef]

D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
[CrossRef]

Xu, F.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Trans. Biomed. Eng. 50, 1233–1242 (2003).
[CrossRef]

Yang, Y.

R. R. Alfano and Y. Yang, “Stokes shift emission spectroscopy of human tissue and key biomolecules,” IEEE J. Quantum Electron. 9, 148–153 (2003).
[CrossRef]

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, “UV reflectance spectroscopy probes DNA and protein changes in human breast tissues,” J. Clin. Laser Med. Surg. 19, 35–39 (2001).
[CrossRef]

Y. Yang, E. J. Celmer, M. J. Szczepaniak, and R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1996).

Zheng, W.

W. Zheng, W. Lau, C. Christopher, K. C. Soo, and M. Oliva, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104, 477–481 (2003).

Zhu, C.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Trans. Biomed. Eng. 50, 1233–1242 (2003).
[CrossRef]

Anal. Chem.

T. Vo-Dinh, “Multicomponent analysis by synchronous luminescence luminescence spectrometry,” Anal. Chem. 50, 396–401 (1978).
[CrossRef]

Annu. Rev. Phys. Chem.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef]

Cancer Res.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).

IEEE J. Quantum Electron.

R. R. Alfano and Y. Yang, “Stokes shift emission spectroscopy of human tissue and key biomolecules,” IEEE J. Quantum Electron. 9, 148–153 (2003).
[CrossRef]

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

IEEE Trans. Biomed. Eng.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Trans. Biomed. Eng. 50, 1233–1242 (2003).
[CrossRef]

Int. J. Cancer

W. Zheng, W. Lau, C. Christopher, K. C. Soo, and M. Oliva, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104, 477–481 (2003).

J. Biol. Chem.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples: NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254, 4764–4771(1971).

J. Biomed. Opt.

J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001).
[CrossRef]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[CrossRef]

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef]

Y. Pu, W. Wang, G. Tang, and R. R. Alfano, “Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studies using native fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004).
[CrossRef]

J. Clin. Laser Med. Surg.

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, “UV reflectance spectroscopy probes DNA and protein changes in human breast tissues,” J. Clin. Laser Med. Surg. 19, 35–39 (2001).
[CrossRef]

J. Mammary Gland Biol. Neoplasia

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165–181 (2006).
[CrossRef]

J. Urol.

L. V. Rodriguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160, 2115–2120 (1998).

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging,” J. Urol. 111, 58–64 (1974).

Lab. Invest.

M. M. Sholley, G. P. Ferguson, and H. R. Seibel, “Mechanisms of neovascularization: vascular sprouting can occur without proliferation of endothelial cells,” Lab. Invest. 51, 624–634 (1984).

Lasers Life Sci.

Y. Yang, E. J. Celmer, M. J. Szczepaniak, and R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1996).

Lasers Med. Sci.

D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005).
[CrossRef]

Photochem. Photobiol.

V. Masilamani, D. Rabah, M. Alsalhi, V. Trinka, and P. Vijayaraghavan, “Spectra discrimination of benign and malignant prostate tissues: a preliminary report,” Photochem. Photobiol. 87, 208–214 (2011).
[CrossRef]

R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy,” Photochem. Photobiol. 78, 384–392 (2003).
[CrossRef]

D. L. Heintzelman, R. Lotan, and R. Richards-Kortum, “Characterization of autofluorescence of polymorphonuclear leukocytes, mononuclear leukocytes and cervical epithelial cancer cells for improved spectroscopic discrimination of inflammation from dysplasia,” Photochem. Photobiol. 71, 327–332 (2000).
[CrossRef]

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000).
[CrossRef]

J. Ebenezar, P. Aruna, and S. Ganesan, “Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro,” Photochem. Photobiol. 86, 77–86 (2010).
[CrossRef]

Proc. SPIE

J. Ebenezar, P. Aruna, and S. Ganesan, “Stokes shift spectroscopy for breast cancer diagnosis,” Proc. SPIE 7561, 75610B (2010).

D. Parmeswarn, S. Ganesan, R. Nalini, P. Aruna, V. Veeraganesh, and R. R. Alfano, “Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx,” Proc. SPIE 2979, 759–764 (1997).
[CrossRef]

Urol. Res.

C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).

C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).
[CrossRef]

Other

American Cancer Society, Cancer Facts and Figures (American Cancer Society, 2009).

J. R. Lackowicz, Principles of Fluorescence Spectroscopy (Plenum, 1983).

A. S. Ladokhin, “Fluorescence spectroscopy in peptide and protein analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 5762–5779.

D. Theodorescu and T.L. Krupski, “Prostate cancer diagnosis and staging,” Medscape Reference, http://emedicine.medscape.com/article/458011-overview(2009) .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Normalized mean Stokes shift spectra of cancerous (solid) and normal (dash) prostate tissues.

Fig. 2.
Fig. 2.

Normalized Stokes shift spectra of standard fluorophores of tryptophan (solid), elastin (dash), collagen (dot), NADH (dash dot), and FAD (dash dot dot).

Fig. 3.
Fig. 3.

Scatter plot of intensity ratio of I297/I345 for normal () and cancerous () prostate tissues.

Fig. 4.
Fig. 4.

Scatter plot of intensity ratio of I307/I345 for normal () and cancerous () prostate tissues.

Tables (1)

Tables Icon

Table 1. Mean ±SD of the Stokes Shift Spectral Ratios of Normal and Cancerous Prostate Tissues

Metrics