Abstract

Interference lithography using a deep-ultraviolet (DUV) laser is instrumental in the manufacture of subwavelength patterns used at visible wavelengths. We investigated a grating mask strategy for exposure in terms of how to set and illuminate masks. To obtain high aspect ratio patterns, high fringe visibility, and high exposure uniformity are essential, and for that purpose the use of only two beams with liquid immersion is necessary but not sufficient. It needs to be addressed whether the grating should face air or liquid to achieve index matching without affecting its beam-splitting properties. Currently, the most feasible solution to produce sub-200 nm periods requires the use of a fused-silica grating under Bragg geometry (not normal incidence geometry) and filling the gap between the grating and resist with a high-index liquid.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Toyota, K. Katahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
    [CrossRef]
  2. X. Deng, F. Lie, J. J. Wang, P. F. Sciortino, L. Chen, and X. Liu, “Achromatic wave plates for optical pickup units fabricated by use of imprint lithography,” Opt. Lett. 30, 2614–2616 (2005).
    [CrossRef]
  3. V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: Fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
    [CrossRef]
  4. M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
    [CrossRef]
  5. T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14, 4167–4170 (1996).
    [CrossRef]
  6. M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
    [CrossRef]
  7. G. Futterer, W. Herbst, J. Rottstegge, M. Ferstl, M. Sebald, and J. Schwider, “Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm,” Proc. SPIE 4691, 1703–1713 (2002).
    [CrossRef]
  8. Y. Bourgin, Y. Jourlin, O. Parriaux, A. Talneau, S. Tonchev, C. Veillas, P. Karvinen, N. Passilly, A. R. MdZain, R. M. DeLaRue, J. VanErps, and D. Troadec, “100 nm period grating by high-index phase-mask immersion lithography,” Opt. Express 18, 10557–10566 (2010).
    [CrossRef]
  9. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  10. J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
    [CrossRef]
  11. M. G. Moharam and T. K. Gayload, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  12. D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F1–F9 (2007).
    [CrossRef]
  13. Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
    [CrossRef]
  14. E. Gamet, A. V. Tishchenko, and O. Parriaux, “Cancellation of the zero order in a phase mask by mode interplay in a high index contrast binary grating,” Appl. Opt. 46, 6719–6726 (2007).
    [CrossRef]
  15. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927–929 (2000).
    [CrossRef]
  16. T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
    [CrossRef]
  17. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, and J. D. Park, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380 (2008).
    [CrossRef]
  18. J. Amako, D. Sawaki, and E. Fujii, “High-efficiency diffractive beam splitters surface-structured on submicrometer scale using deep-UV interference lithography,” Appl. Opt. 48, 5105–5113 (2009).
    [CrossRef]
  19. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
    [CrossRef]
  20. S. M. Kim, W. Zhang, and B. T. Cunningham, “Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy,” Opt. Express 18, 4300–4309 (2010).
    [CrossRef]
  21. T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
    [CrossRef]

2010 (3)

2009 (1)

2008 (1)

2007 (2)

2006 (2)

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
[CrossRef]

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: Fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

2005 (2)

T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
[CrossRef]

X. Deng, F. Lie, J. J. Wang, P. F. Sciortino, L. Chen, and X. Liu, “Achromatic wave plates for optical pickup units fabricated by use of imprint lithography,” Opt. Lett. 30, 2614–2616 (2005).
[CrossRef]

2004 (1)

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

2002 (1)

G. Futterer, W. Herbst, J. Rottstegge, M. Ferstl, M. Sebald, and J. Schwider, “Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm,” Proc. SPIE 4691, 1703–1713 (2002).
[CrossRef]

2001 (1)

H. Toyota, K. Katahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

2000 (1)

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927–929 (2000).
[CrossRef]

1999 (2)

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

1996 (1)

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14, 4167–4170 (1996).
[CrossRef]

1991 (1)

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

1982 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Adamson, D. H.

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: Fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Amako, J.

Asakawa, K.

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: Fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Bourgin, Y.

Canizares, C. R.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Carter, J.

M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Carter, J. M.

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14, 4167–4170 (1996).
[CrossRef]

Chaikin, P. M.

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: Fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Chen, L.

Chiba, T.

T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
[CrossRef]

Chou, S. Y.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927–929 (2000).
[CrossRef]

Cunningham, B. T.

DeLaRue, R. M.

Deng, X.

Deshpande, P.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927–929 (2000).
[CrossRef]

Dewey, D.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Farhoud, M.

M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Ferrera, J.

M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Ferstl, M.

G. Futterer, W. Herbst, J. Rottstegge, M. Ferstl, M. Sebald, and J. Schwider, “Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm,” Proc. SPIE 4691, 1703–1713 (2002).
[CrossRef]

Flanagan, K. A.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Fujii, E.

Furukawa, T.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
[CrossRef]

Futterer, G.

G. Futterer, W. Herbst, J. Rottstegge, M. Ferstl, M. Sebald, and J. Schwider, “Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm,” Proc. SPIE 4691, 1703–1713 (2002).
[CrossRef]

Gamet, E.

Gayload, T. K.

Hamnett, M.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Herbst, W.

G. Futterer, W. Herbst, J. Rottstegge, M. Ferstl, M. Sebald, and J. Schwider, “Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm,” Proc. SPIE 4691, 1703–1713 (2002).
[CrossRef]

Hieda, K.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
[CrossRef]

T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
[CrossRef]

Hinsberg, W. D.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

Hoffnagle, J. A.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

Houle, F. A.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

Isano, T.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Ishizuka, K.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Ito, K.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
[CrossRef]

Iwakami, N.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Jourlin, Y.

Kaneda, Y.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Karvinen, P.

Katahara, K.

H. Toyota, K. Katahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Kikuta, H.

H. Toyota, K. Katahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Kim, S. H.

Kim, S. M.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kusumoto, S.

T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
[CrossRef]

Lee, H. S.

Lee, S. S.

Lee, Y. T.

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Leem, J. W.

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Levin, A. M.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Lie, F.

Liu, X.

lochtefeld, A. J.

M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Manikkalingam, R.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Markert, T. H.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

MdZain, A. R.

Miyamatsu, T.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
[CrossRef]

T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
[CrossRef]

Moharam, M. G.

Murphy, T. E.

M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Nakagawa, H.

T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
[CrossRef]

Okano, M.

H. Toyota, K. Katahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Park, J. D.

Parriaux, O.

Passilly, N.

Pelletier, V.

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: Fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Register, R. A.

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: Fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Ross, C. A.

M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Rottstegge, J.

G. Futterer, W. Herbst, J. Rottstegge, M. Ferstl, M. Sebald, and J. Schwider, “Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm,” Proc. SPIE 4691, 1703–1713 (2002).
[CrossRef]

Rum, K. S. K.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Sanchez, M.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

Savas, T. A.

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14, 4167–4170 (1996).
[CrossRef]

Sawaki, D.

Schattenburg, M. L.

M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14, 4167–4170 (1996).
[CrossRef]

Schwider, J.

G. Futterer, W. Herbst, J. Rottstegge, M. Ferstl, M. Sebald, and J. Schwider, “Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm,” Proc. SPIE 4691, 1703–1713 (2002).
[CrossRef]

Sciortino, P. F.

Sebald, M.

G. Futterer, W. Herbst, J. Rottstegge, M. Ferstl, M. Sebald, and J. Schwider, “Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm,” Proc. SPIE 4691, 1703–1713 (2002).
[CrossRef]

Shattenburg, M. L.

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Shima, M.

T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
[CrossRef]

Shimokawa, T.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
[CrossRef]

T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
[CrossRef]

Smith, H. I.

M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14, 4167–4170 (1996).
[CrossRef]

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Song, Y. M.

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Suzuki, N.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Talneau, A.

Tishchenko, A. V.

Tonchev, S.

Toyota, H.

H. Toyota, K. Katahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Troadec, D.

VanErps, J.

Veillas, C.

Wang, J.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927–929 (2000).
[CrossRef]

Wang, J. J.

Wang, Y.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
[CrossRef]

T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
[CrossRef]

Wu, M.

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: Fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Wu, W.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927–929 (2000).
[CrossRef]

Yada, Y.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
[CrossRef]

Yamaguchi, Y.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
[CrossRef]

Yoon, Y. T.

Yotsuya, T.

H. Toyota, K. Katahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Yu, J. S.

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Yu, Z.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927–929 (2000).
[CrossRef]

Zhang, W.

Appl. Opt. (2)

Appl. Phys. B (1)

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: Fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927–929 (2000).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (3)

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999).
[CrossRef]

T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14, 4167–4170 (1996).
[CrossRef]

M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

H. Toyota, K. Katahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Opt. Eng. (1)

M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (4)

T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005).
[CrossRef]

G. Futterer, W. Herbst, J. Rottstegge, M. Ferstl, M. Sebald, and J. Schwider, “Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm,” Proc. SPIE 4691, 1703–1713 (2002).
[CrossRef]

D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F1–F9 (2007).
[CrossRef]

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Liquid-immersion exposure setup with a 140 nm-grating mask used at Bragg angle for resist patterns with period 140 nm.

Fig. 2.
Fig. 2.

SEM image of grating relief patterns with period of 140 nm fabricated in fused silica.

Fig. 3.
Fig. 3.

Interference intensity distribution (computer simulation) in resist exposed under the optical setup in Fig. 1 for a fill factor of 0.5 and a depth of 150 nm.

Fig. 4.
Fig. 4.

SEM image of resist patterns obtained using the optical setup in Fig. 1.

Fig. 5.
Fig. 5.

Liquid-immersion exposure setup with a 280 nm-grating mask used at normal incidence for resist patterns with period 140 nm.

Fig. 6.
Fig. 6.

Interference intensity distributions (computer simulation) in resist exposed using the optical setup in Fig. 5 for a fill factor of 0.4 and a depth of 200 nm. The thickness of the high-index liquid layer is set at (a) 100, (b) 105, and (c) 110 μm.

Fig. 7.
Fig. 7.

SEM images of resist patterns obtained using the setup in Fig. 5 at different locations, (a), (b), and (c), across the sample.

Fig. 8.
Fig. 8.

Liquid-immersion exposure setup with a 280 nm-grating mask used at the second Bragg angle for resist patterns with period 280 nm.

Fig. 9.
Fig. 9.

Interference intensity distributions (computer simulation) in resist exposed using the optical setup in Fig. 8 for a grating fill factor of 0.5 and a depth of 225 nm. The thickness of the high-index liquid layer is set at (a) 100 and (b) 102.5 μm.

Fig. 10.
Fig. 10.

SEM images of resist patterns obtained using the optical setup in Fig. 8 at different locations, (a) and (b), on the sample.

Fig. 11.
Fig. 11.

Interference fringe distributions (in two cycles) under Bragg angle incidence: the ratio of 0th-order intensity to—1st-order intensity is (a) 1.0, (b) 0.80, and (c) 0.50.

Fig. 12.
Fig. 12.

Interference fringe distributions (in two cycles) under normal incidence: the ratio of 0th-order intensity to ±1st-order intensity is (a) 0.0, (b) 0.10, and (c) 0.70.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

np=nΛ<λ<2Λ=2p.
np=nΛ/2<λ<nΛ=2np.
I(ϕ)=(I0+I1)[1+Vcos(ϕ)],
I(ϕ)=I1[2cos(ϕ/2)+β(1/2)]2,

Metrics