Abstract

In this paper, we present a self-consistent theoretical model for a metal-insulator semiconductor (MIS) dual band ultraviolet (UV) photodetector with a modified structure implying an arbitrarily defined insulating potential barrier as its active region. Utilizing our proposed model, the dark and photocurrent density-voltage (JV) characteristics of MIS UV photodetectors with multi-quantum wells of silicon (MQWs) are calculated. We demonstrate that dark current is reduced in the suggested structure, because the electron-tunneling probability becomes unity at energies coincident with the peak detection wavelength. This is due to the resonant tunneling and decreases at energies that are significantly smaller than this optimum value. In consequence, the number of carriers contributing to the dark current, which have a broad energy distribution at high temperatures, will decrease. It is also shown that the designed structure could detect two individual UV wavelengths, simultaneously. The width of each Si quantum well has been considered at around 1.2 nm, in order to observe these two absorption peaks in the middle and near UV regions of photon spectrum (about 365 nm, 175 nm).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Carrier, J. Lewis, and D. Harma-wardana, “Optical properties of structurally-relaxed Si/SiO2 superlattices: the role of bonding at interfaces,” http://arxiv.org/abs/cond-mat/0111259 .
  2. T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Phys. Rev. B 63, 195322 (2001).
    [CrossRef]
  3. M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197–200(1999).
    [CrossRef]
  4. O. Nayfeh, S. Rao, and A. Smith, “Thin film silicon nanoparticle UV photodetector,” IEEE Photon. Technol. Lett. 16, 127–129 (2004).
    [CrossRef]
  5. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80, 661 (2002).
    [CrossRef]
  6. R. Rölver, B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz, “Lateral Si/SiO2 quantum well solar cells,” Appl. Phys. Lett. 92, 212108 (2008).
    [CrossRef]
  7. M. K. Lee, C. H. Chu, Y. H. Wang, and S. M. Sze, “1.55-μm and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector,” Opt. Lett. 26, 160–162 (2001).
    [CrossRef]
  8. L. DeXing, L. Linhan, and J. Feng, “Electronic state and momentum matrix of H-passivated silicon nanonets: A first-principles calculation,” Phys. E 42, 1583–1589 (2010).
    [CrossRef]
  9. J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
    [CrossRef]
  10. L. Pavesi and R. Turan, Silicon Nanocrystals: Fundamentals, Synthesis and Applications (Wiley-VCH, 2010).
  11. K. Imakita, M. Fujii, T. Nakanuro, S. Miura, E. Takeda, and S. Hayashi, “Enhancement of radiative recombination rate of excitons in Si nanocrystals on Au Film,” Jpn. J. Appl. Phys. 45, 6132–6136 (2006).
    [CrossRef]
  12. K. Seino, J. M. Wagner, and F. Bechstedt, “Quasiparticle effect on electron confinement in Si/SiO2 quantum-well structures,” Appl. Phys. Lett. 90, 253109 (2007).
    [CrossRef]
  13. J. M. Shieh, Y. F. Lai, and W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer,” Appl. Phys. Lett. 90, 051105 (2007).
    [CrossRef]
  14. C. Jiang, M. Green, and Silicon quantum dot superlattices, “Modeling of energy bands, densities of states, and mobilities for silicon tandem solarcell applications,” J. Appl. Phys. 99, 114902 (2006).
    [CrossRef]
  15. W. Pan, J. Lu, J. Chen, and W. Z. Shen, “Resonant tunneling characteristics in crystalline silicon/nanocrystalline silicon heterostructure diodes,” Phys. Rev. B 74, 125308 (2006).
    [CrossRef]
  16. A. G. Zhdan, N. F. Kukharskaya, V. G. Naryshkina, and G. V. Chucheva, “Reconstruction of dependences of the tunneling current reconstruction of dependences of the tunneling current characteristics of the n+–Si–SiO2–n–Si heterostructures,” Semiconductors 41, 1117–1125 (2007).
    [CrossRef]
  17. A. F. J. Levi, Applied Quantum Mechanics (Cambridge University, 2006).
  18. A. Rostami, H. Baghban, and H. Rasooli Saghai, “An ultra-high level second-order nonlinear optical susceptibility in strained asymmetric GaN─AlGaN─AlN quantum wells: towards all-optical devices and systems,” Microelectron. J. 38, 900–904 (2007).
    [CrossRef]
  19. L. C. Lew, Y. Voon, and M. Willatzen, The K.P Method: Electronic Properties of Semiconductors (Springer, 2009).
  20. C. Flynn, D. König, M. A. Green, and G. Conibeer, “Modeling of metal—insulator—semiconductor devices featuring a silicon quantum well,” Physica E 42, 2211–2217 (2010).
    [CrossRef]
  21. G. Tarr, D. Pvlfrey, and D. Camporsi, “An analytic model for the MIS tunnel junction,” IEEE Trans. Electron Devices 30, 1760–1770 (1983).
    [CrossRef]
  22. Y. Ando and T. Itoh, “Calculation of transmission tunneling current across arbitrary potential barriers,” J. Appl. Phys. 61, 1497–1502 (1987).
    [CrossRef]
  23. C. Bracher, M. Kleber, and M. Riza, “Variational approach to the tunneling-time problem,” Phys. Rev. A 60, 1864–1873 (1999).
    [CrossRef]
  24. N. W. Ashcroft and N. D. Mermin, Solid State Physics(Philadelphia, Saunders College, 1976).
  25. M. Depas, R. L. Meirhaeghe, W. H. Laflere, and F. Cardon, “A quantitative analysis of capacitance peaks in the impedance of Al/SiOx/p–Si tunnel diodes,” Semicond. Sci. Technol. 7, 1476–1483 (1992).
    [CrossRef]
  26. M. F. Iskander, Electromagnetic Fields and Waves (Prentice-Hall, 1992).
  27. S. E. Laux, A. Kumar, and M. V. Fischetti, “Analysis of quantum ballistic electron transport in ultra-small semiconductor devices including space-charge effects,” J. Appl. Phys. 95, 1695597 (2004).
    [CrossRef]
  28. R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
    [CrossRef]
  29. A. M. Fox, A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
    [CrossRef]
  30. G. Lasher and F. Stern, “Spontaneous and stimulated recombination radiation in semiconductors,” Phys. Rev. A 133, 553–563 (1964).
  31. H. Schneider and K. V. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlGaAs As multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988).
    [CrossRef]
  32. A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p–i–n photodetectors: characteristics. theory, and applications,” IEEE J. Quantum Electron. 24, 787–801 (1988).
    [CrossRef]
  33. S. G. Matsik and A. G. Perera, “Self-consistent performance modeling for dual band detectors,” J. Appl. Phys. 104, 044502 (2008).
    [CrossRef]
  34. S. Højfeldt and J. Mørk, “Modeling of Carrier Dynamics in Quantum-Well Electroabsorption Modulators,” IEEE J. Sel. Top. Quantum Electron. 8, 1265–1276 (2002).
    [CrossRef]
  35. A. Sakamoto and M. Sugawara, “Theoretical calculation of lasing spectra of quantum-dot Lasers: effect of homogeneous broadening of optical gain,” IEEE Photon. Technol. Lett. 12, 107–109 (2000).
    [CrossRef]
  36. G. Allan and C. Delerue, “Energy transfer between semiconductor nanocrystals: validity of Förster’s theory,” Phys. Rev. B 75, 1953112007.
    [CrossRef]
  37. T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
    [CrossRef]
  38. B. F. Levine and H. Murray, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
  39. S. M. Hossain, A. Anopchenko, S. Prezioso, and L. Ferraioli, “Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device,” J. Appl. Phys. 104, 074917 (2008).
    [CrossRef]
  40. H. Nayfeh, R. Satish, O. M. Nayfeh, A. Smith, and J. Therrien, “UV photodetectors with thin-film Si nanoparticle active medium,” IEEE Trans. Nanotechnol. 4, 660–668 (2005).
    [CrossRef]

2010 (2)

L. DeXing, L. Linhan, and J. Feng, “Electronic state and momentum matrix of H-passivated silicon nanonets: A first-principles calculation,” Phys. E 42, 1583–1589 (2010).
[CrossRef]

C. Flynn, D. König, M. A. Green, and G. Conibeer, “Modeling of metal—insulator—semiconductor devices featuring a silicon quantum well,” Physica E 42, 2211–2217 (2010).
[CrossRef]

2008 (3)

S. G. Matsik and A. G. Perera, “Self-consistent performance modeling for dual band detectors,” J. Appl. Phys. 104, 044502 (2008).
[CrossRef]

S. M. Hossain, A. Anopchenko, S. Prezioso, and L. Ferraioli, “Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device,” J. Appl. Phys. 104, 074917 (2008).
[CrossRef]

R. Rölver, B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz, “Lateral Si/SiO2 quantum well solar cells,” Appl. Phys. Lett. 92, 212108 (2008).
[CrossRef]

2007 (6)

G. Allan and C. Delerue, “Energy transfer between semiconductor nanocrystals: validity of Förster’s theory,” Phys. Rev. B 75, 1953112007.
[CrossRef]

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

A. G. Zhdan, N. F. Kukharskaya, V. G. Naryshkina, and G. V. Chucheva, “Reconstruction of dependences of the tunneling current reconstruction of dependences of the tunneling current characteristics of the n+–Si–SiO2–n–Si heterostructures,” Semiconductors 41, 1117–1125 (2007).
[CrossRef]

A. Rostami, H. Baghban, and H. Rasooli Saghai, “An ultra-high level second-order nonlinear optical susceptibility in strained asymmetric GaN─AlGaN─AlN quantum wells: towards all-optical devices and systems,” Microelectron. J. 38, 900–904 (2007).
[CrossRef]

K. Seino, J. M. Wagner, and F. Bechstedt, “Quasiparticle effect on electron confinement in Si/SiO2 quantum-well structures,” Appl. Phys. Lett. 90, 253109 (2007).
[CrossRef]

J. M. Shieh, Y. F. Lai, and W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer,” Appl. Phys. Lett. 90, 051105 (2007).
[CrossRef]

2006 (3)

C. Jiang, M. Green, and Silicon quantum dot superlattices, “Modeling of energy bands, densities of states, and mobilities for silicon tandem solarcell applications,” J. Appl. Phys. 99, 114902 (2006).
[CrossRef]

W. Pan, J. Lu, J. Chen, and W. Z. Shen, “Resonant tunneling characteristics in crystalline silicon/nanocrystalline silicon heterostructure diodes,” Phys. Rev. B 74, 125308 (2006).
[CrossRef]

K. Imakita, M. Fujii, T. Nakanuro, S. Miura, E. Takeda, and S. Hayashi, “Enhancement of radiative recombination rate of excitons in Si nanocrystals on Au Film,” Jpn. J. Appl. Phys. 45, 6132–6136 (2006).
[CrossRef]

2005 (1)

H. Nayfeh, R. Satish, O. M. Nayfeh, A. Smith, and J. Therrien, “UV photodetectors with thin-film Si nanoparticle active medium,” IEEE Trans. Nanotechnol. 4, 660–668 (2005).
[CrossRef]

2004 (2)

O. Nayfeh, S. Rao, and A. Smith, “Thin film silicon nanoparticle UV photodetector,” IEEE Photon. Technol. Lett. 16, 127–129 (2004).
[CrossRef]

S. E. Laux, A. Kumar, and M. V. Fischetti, “Analysis of quantum ballistic electron transport in ultra-small semiconductor devices including space-charge effects,” J. Appl. Phys. 95, 1695597 (2004).
[CrossRef]

2002 (2)

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80, 661 (2002).
[CrossRef]

S. Højfeldt and J. Mørk, “Modeling of Carrier Dynamics in Quantum-Well Electroabsorption Modulators,” IEEE J. Sel. Top. Quantum Electron. 8, 1265–1276 (2002).
[CrossRef]

2001 (2)

M. K. Lee, C. H. Chu, Y. H. Wang, and S. M. Sze, “1.55-μm and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector,” Opt. Lett. 26, 160–162 (2001).
[CrossRef]

T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Phys. Rev. B 63, 195322 (2001).
[CrossRef]

2000 (1)

A. Sakamoto and M. Sugawara, “Theoretical calculation of lasing spectra of quantum-dot Lasers: effect of homogeneous broadening of optical gain,” IEEE Photon. Technol. Lett. 12, 107–109 (2000).
[CrossRef]

1999 (2)

M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197–200(1999).
[CrossRef]

C. Bracher, M. Kleber, and M. Riza, “Variational approach to the tunneling-time problem,” Phys. Rev. A 60, 1864–1873 (1999).
[CrossRef]

1998 (1)

R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
[CrossRef]

1993 (1)

B. F. Levine and H. Murray, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).

1992 (1)

M. Depas, R. L. Meirhaeghe, W. H. Laflere, and F. Cardon, “A quantitative analysis of capacitance peaks in the impedance of Al/SiOx/p–Si tunnel diodes,” Semicond. Sci. Technol. 7, 1476–1483 (1992).
[CrossRef]

1991 (1)

A. M. Fox, A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

1988 (2)

H. Schneider and K. V. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlGaAs As multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988).
[CrossRef]

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p–i–n photodetectors: characteristics. theory, and applications,” IEEE J. Quantum Electron. 24, 787–801 (1988).
[CrossRef]

1987 (1)

Y. Ando and T. Itoh, “Calculation of transmission tunneling current across arbitrary potential barriers,” J. Appl. Phys. 61, 1497–1502 (1987).
[CrossRef]

1983 (1)

G. Tarr, D. Pvlfrey, and D. Camporsi, “An analytic model for the MIS tunnel junction,” IEEE Trans. Electron Devices 30, 1760–1770 (1983).
[CrossRef]

1982 (1)

T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
[CrossRef]

1964 (1)

G. Lasher and F. Stern, “Spontaneous and stimulated recombination radiation in semiconductors,” Phys. Rev. A 133, 553–563 (1964).

Ait-Ouali, A.

R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
[CrossRef]

Allan, G.

G. Allan and C. Delerue, “Energy transfer between semiconductor nanocrystals: validity of Förster’s theory,” Phys. Rev. B 75, 1953112007.
[CrossRef]

M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197–200(1999).
[CrossRef]

Ando, T.

T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
[CrossRef]

Ando, Y.

Y. Ando and T. Itoh, “Calculation of transmission tunneling current across arbitrary potential barriers,” J. Appl. Phys. 61, 1497–1502 (1987).
[CrossRef]

Andrekson, P. A.

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p–i–n photodetectors: characteristics. theory, and applications,” IEEE J. Quantum Electron. 24, 787–801 (1988).
[CrossRef]

Anopchenko, A.

S. M. Hossain, A. Anopchenko, S. Prezioso, and L. Ferraioli, “Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device,” J. Appl. Phys. 104, 074917 (2008).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics(Philadelphia, Saunders College, 1976).

Baghban, H.

A. Rostami, H. Baghban, and H. Rasooli Saghai, “An ultra-high level second-order nonlinear optical susceptibility in strained asymmetric GaN─AlGaN─AlN quantum wells: towards all-optical devices and systems,” Microelectron. J. 38, 900–904 (2007).
[CrossRef]

Bätzner, D. L.

R. Rölver, B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz, “Lateral Si/SiO2 quantum well solar cells,” Appl. Phys. Lett. 92, 212108 (2008).
[CrossRef]

Bechstedt, F.

K. Seino, J. M. Wagner, and F. Bechstedt, “Quasiparticle effect on electron confinement in Si/SiO2 quantum-well structures,” Appl. Phys. Lett. 90, 253109 (2007).
[CrossRef]

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

Berghoff, B.

R. Rölver, B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz, “Lateral Si/SiO2 quantum well solar cells,” Appl. Phys. Lett. 92, 212108 (2008).
[CrossRef]

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

Bläsing, J.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80, 661 (2002).
[CrossRef]

Bracher, C.

C. Bracher, M. Kleber, and M. Riza, “Variational approach to the tunneling-time problem,” Phys. Rev. A 60, 1864–1873 (1999).
[CrossRef]

Brebner, J. L.

R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
[CrossRef]

Camporsi, D.

G. Tarr, D. Pvlfrey, and D. Camporsi, “An analytic model for the MIS tunnel junction,” IEEE Trans. Electron Devices 30, 1760–1770 (1983).
[CrossRef]

Cardon, F.

M. Depas, R. L. Meirhaeghe, W. H. Laflere, and F. Cardon, “A quantitative analysis of capacitance peaks in the impedance of Al/SiOx/p–Si tunnel diodes,” Semicond. Sci. Technol. 7, 1476–1483 (1992).
[CrossRef]

Chen, J.

W. Pan, J. Lu, J. Chen, and W. Z. Shen, “Resonant tunneling characteristics in crystalline silicon/nanocrystalline silicon heterostructure diodes,” Phys. Rev. B 74, 125308 (2006).
[CrossRef]

Chu, C. H.

Chucheva, G. V.

A. G. Zhdan, N. F. Kukharskaya, V. G. Naryshkina, and G. V. Chucheva, “Reconstruction of dependences of the tunneling current reconstruction of dependences of the tunneling current characteristics of the n+–Si–SiO2–n–Si heterostructures,” Semiconductors 41, 1117–1125 (2007).
[CrossRef]

Conibeer, G.

C. Flynn, D. König, M. A. Green, and G. Conibeer, “Modeling of metal—insulator—semiconductor devices featuring a silicon quantum well,” Physica E 42, 2211–2217 (2010).
[CrossRef]

Cunningham, J. E.

A. M. Fox, A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Currie, J. F.

R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
[CrossRef]

Delerue, C.

G. Allan and C. Delerue, “Energy transfer between semiconductor nanocrystals: validity of Förster’s theory,” Phys. Rev. B 75, 1953112007.
[CrossRef]

M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197–200(1999).
[CrossRef]

Depas, M.

M. Depas, R. L. Meirhaeghe, W. H. Laflere, and F. Cardon, “A quantitative analysis of capacitance peaks in the impedance of Al/SiOx/p–Si tunnel diodes,” Semicond. Sci. Technol. 7, 1476–1483 (1992).
[CrossRef]

Desjardins, P.

R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
[CrossRef]

DeXing, L.

L. DeXing, L. Linhan, and J. Feng, “Electronic state and momentum matrix of H-passivated silicon nanonets: A first-principles calculation,” Phys. E 42, 1583–1589 (2010).
[CrossRef]

Dymiati, A.

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

Eng, S. T.

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p–i–n photodetectors: characteristics. theory, and applications,” IEEE J. Quantum Electron. 24, 787–801 (1988).
[CrossRef]

Fauchet, P.

M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197–200(1999).
[CrossRef]

Feng, J.

L. DeXing, L. Linhan, and J. Feng, “Electronic state and momentum matrix of H-passivated silicon nanonets: A first-principles calculation,” Phys. E 42, 1583–1589 (2010).
[CrossRef]

Ferraioli, L.

S. M. Hossain, A. Anopchenko, S. Prezioso, and L. Ferraioli, “Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device,” J. Appl. Phys. 104, 074917 (2008).
[CrossRef]

Fischetti, M. V.

S. E. Laux, A. Kumar, and M. V. Fischetti, “Analysis of quantum ballistic electron transport in ultra-small semiconductor devices including space-charge effects,” J. Appl. Phys. 95, 1695597 (2004).
[CrossRef]

Flynn, C.

C. Flynn, D. König, M. A. Green, and G. Conibeer, “Modeling of metal—insulator—semiconductor devices featuring a silicon quantum well,” Physica E 42, 2211–2217 (2010).
[CrossRef]

Forst, M.

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

Fowler, A. B.

T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
[CrossRef]

Fox, A. M.

A. M. Fox, A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Fujii, M.

K. Imakita, M. Fujii, T. Nakanuro, S. Miura, E. Takeda, and S. Hayashi, “Enhancement of radiative recombination rate of excitons in Si nanocrystals on Au Film,” Jpn. J. Appl. Phys. 45, 6132–6136 (2006).
[CrossRef]

Green, M.

C. Jiang, M. Green, and Silicon quantum dot superlattices, “Modeling of energy bands, densities of states, and mobilities for silicon tandem solarcell applications,” J. Appl. Phys. 99, 114902 (2006).
[CrossRef]

Green, M. A.

C. Flynn, D. König, M. A. Green, and G. Conibeer, “Modeling of metal—insulator—semiconductor devices featuring a silicon quantum well,” Physica E 42, 2211–2217 (2010).
[CrossRef]

Hayashi, S.

K. Imakita, M. Fujii, T. Nakanuro, S. Miura, E. Takeda, and S. Hayashi, “Enhancement of radiative recombination rate of excitons in Si nanocrystals on Au Film,” Jpn. J. Appl. Phys. 45, 6132–6136 (2006).
[CrossRef]

Heitmann, J.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80, 661 (2002).
[CrossRef]

Højfeldt, S.

S. Højfeldt and J. Mørk, “Modeling of Carrier Dynamics in Quantum-Well Electroabsorption Modulators,” IEEE J. Sel. Top. Quantum Electron. 8, 1265–1276 (2002).
[CrossRef]

Hossain, S. M.

S. M. Hossain, A. Anopchenko, S. Prezioso, and L. Ferraioli, “Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device,” J. Appl. Phys. 104, 074917 (2008).
[CrossRef]

Imakita, K.

K. Imakita, M. Fujii, T. Nakanuro, S. Miura, E. Takeda, and S. Hayashi, “Enhancement of radiative recombination rate of excitons in Si nanocrystals on Au Film,” Jpn. J. Appl. Phys. 45, 6132–6136 (2006).
[CrossRef]

Iskander, M. F.

M. F. Iskander, Electromagnetic Fields and Waves (Prentice-Hall, 1992).

Isnard, L.

R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
[CrossRef]

Itoh, T.

Y. Ando and T. Itoh, “Calculation of transmission tunneling current across arbitrary potential barriers,” J. Appl. Phys. 61, 1497–1502 (1987).
[CrossRef]

Jan, W. Y.

A. M. Fox, A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Jiang, C.

C. Jiang, M. Green, and Silicon quantum dot superlattices, “Modeling of energy bands, densities of states, and mobilities for silicon tandem solarcell applications,” J. Appl. Phys. 99, 114902 (2006).
[CrossRef]

Jorne, J.

M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197–200(1999).
[CrossRef]

Kahler, U.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80, 661 (2002).
[CrossRef]

Kanemitsu, Y.

T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Phys. Rev. B 63, 195322 (2001).
[CrossRef]

Kleber, M.

C. Bracher, M. Kleber, and M. Riza, “Variational approach to the tunneling-time problem,” Phys. Rev. A 60, 1864–1873 (1999).
[CrossRef]

Klitzing, K. V.

H. Schneider and K. V. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlGaAs As multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988).
[CrossRef]

König, D.

C. Flynn, D. König, M. A. Green, and G. Conibeer, “Modeling of metal—insulator—semiconductor devices featuring a silicon quantum well,” Physica E 42, 2211–2217 (2010).
[CrossRef]

Kukharskaya, N. F.

A. G. Zhdan, N. F. Kukharskaya, V. G. Naryshkina, and G. V. Chucheva, “Reconstruction of dependences of the tunneling current reconstruction of dependences of the tunneling current characteristics of the n+–Si–SiO2–n–Si heterostructures,” Semiconductors 41, 1117–1125 (2007).
[CrossRef]

Kumar, A.

S. E. Laux, A. Kumar, and M. V. Fischetti, “Analysis of quantum ballistic electron transport in ultra-small semiconductor devices including space-charge effects,” J. Appl. Phys. 95, 1695597 (2004).
[CrossRef]

Kurz, H.

R. Rölver, B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz, “Lateral Si/SiO2 quantum well solar cells,” Appl. Phys. Lett. 92, 212108 (2008).
[CrossRef]

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

Laflere, W. H.

M. Depas, R. L. Meirhaeghe, W. H. Laflere, and F. Cardon, “A quantitative analysis of capacitance peaks in the impedance of Al/SiOx/p–Si tunnel diodes,” Semicond. Sci. Technol. 7, 1476–1483 (1992).
[CrossRef]

Lai, Y. F.

J. M. Shieh, Y. F. Lai, and W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer,” Appl. Phys. Lett. 90, 051105 (2007).
[CrossRef]

Larsson, A.

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p–i–n photodetectors: characteristics. theory, and applications,” IEEE J. Quantum Electron. 24, 787–801 (1988).
[CrossRef]

Lasher, G.

G. Lasher and F. Stern, “Spontaneous and stimulated recombination radiation in semiconductors,” Phys. Rev. A 133, 553–563 (1964).

Laux, S. E.

S. E. Laux, A. Kumar, and M. V. Fischetti, “Analysis of quantum ballistic electron transport in ultra-small semiconductor devices including space-charge effects,” J. Appl. Phys. 95, 1695597 (2004).
[CrossRef]

Lee, M. K.

Levi, A. F. J.

A. F. J. Levi, Applied Quantum Mechanics (Cambridge University, 2006).

Levine, B. F.

B. F. Levine and H. Murray, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).

Lew, L. C.

L. C. Lew, Y. Voon, and M. Willatzen, The K.P Method: Electronic Properties of Semiconductors (Springer, 2009).

Linhan, L.

L. DeXing, L. Linhan, and J. Feng, “Electronic state and momentum matrix of H-passivated silicon nanonets: A first-principles calculation,” Phys. E 42, 1583–1589 (2010).
[CrossRef]

Livescu, G.

A. M. Fox, A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Lu, J.

W. Pan, J. Lu, J. Chen, and W. Z. Shen, “Resonant tunneling characteristics in crystalline silicon/nanocrystalline silicon heterostructure diodes,” Phys. Rev. B 74, 125308 (2006).
[CrossRef]

Marchand, H.

R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
[CrossRef]

Masumoto, Y.

T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Phys. Rev. B 63, 195322 (2001).
[CrossRef]

Masut, R. A.

R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
[CrossRef]

Matsik, S. G.

S. G. Matsik and A. G. Perera, “Self-consistent performance modeling for dual band detectors,” J. Appl. Phys. 104, 044502 (2008).
[CrossRef]

Matsumoto, T.

T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Phys. Rev. B 63, 195322 (2001).
[CrossRef]

Mayer, J.

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

Meirhaeghe, R. L.

M. Depas, R. L. Meirhaeghe, W. H. Laflere, and F. Cardon, “A quantitative analysis of capacitance peaks in the impedance of Al/SiOx/p–Si tunnel diodes,” Semicond. Sci. Technol. 7, 1476–1483 (1992).
[CrossRef]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics(Philadelphia, Saunders College, 1976).

Miller, A. B.

A. M. Fox, A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Miura, S.

K. Imakita, M. Fujii, T. Nakanuro, S. Miura, E. Takeda, and S. Hayashi, “Enhancement of radiative recombination rate of excitons in Si nanocrystals on Au Film,” Jpn. J. Appl. Phys. 45, 6132–6136 (2006).
[CrossRef]

Mørk, J.

S. Højfeldt and J. Mørk, “Modeling of Carrier Dynamics in Quantum-Well Electroabsorption Modulators,” IEEE J. Sel. Top. Quantum Electron. 8, 1265–1276 (2002).
[CrossRef]

Murray, H.

B. F. Levine and H. Murray, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).

Nakanuro, T.

K. Imakita, M. Fujii, T. Nakanuro, S. Miura, E. Takeda, and S. Hayashi, “Enhancement of radiative recombination rate of excitons in Si nanocrystals on Au Film,” Jpn. J. Appl. Phys. 45, 6132–6136 (2006).
[CrossRef]

Naryshkina, V. G.

A. G. Zhdan, N. F. Kukharskaya, V. G. Naryshkina, and G. V. Chucheva, “Reconstruction of dependences of the tunneling current reconstruction of dependences of the tunneling current characteristics of the n+–Si–SiO2–n–Si heterostructures,” Semiconductors 41, 1117–1125 (2007).
[CrossRef]

Nayfeh, H.

H. Nayfeh, R. Satish, O. M. Nayfeh, A. Smith, and J. Therrien, “UV photodetectors with thin-film Si nanoparticle active medium,” IEEE Trans. Nanotechnol. 4, 660–668 (2005).
[CrossRef]

Nayfeh, O.

O. Nayfeh, S. Rao, and A. Smith, “Thin film silicon nanoparticle UV photodetector,” IEEE Photon. Technol. Lett. 16, 127–129 (2004).
[CrossRef]

Nayfeh, O. M.

H. Nayfeh, R. Satish, O. M. Nayfeh, A. Smith, and J. Therrien, “UV photodetectors with thin-film Si nanoparticle active medium,” IEEE Trans. Nanotechnol. 4, 660–668 (2005).
[CrossRef]

Ni, W. X.

J. M. Shieh, Y. F. Lai, and W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer,” Appl. Phys. Lett. 90, 051105 (2007).
[CrossRef]

Ohnuma, M.

T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Phys. Rev. B 63, 195322 (2001).
[CrossRef]

Pan, W.

W. Pan, J. Lu, J. Chen, and W. Z. Shen, “Resonant tunneling characteristics in crystalline silicon/nanocrystalline silicon heterostructure diodes,” Phys. Rev. B 74, 125308 (2006).
[CrossRef]

Pavesi, L.

L. Pavesi and R. Turan, Silicon Nanocrystals: Fundamentals, Synthesis and Applications (Wiley-VCH, 2010).

Perera, A. G.

S. G. Matsik and A. G. Perera, “Self-consistent performance modeling for dual band detectors,” J. Appl. Phys. 104, 044502 (2008).
[CrossRef]

Prezioso, S.

S. M. Hossain, A. Anopchenko, S. Prezioso, and L. Ferraioli, “Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device,” J. Appl. Phys. 104, 074917 (2008).
[CrossRef]

Pvlfrey, D.

G. Tarr, D. Pvlfrey, and D. Camporsi, “An analytic model for the MIS tunnel junction,” IEEE Trans. Electron Devices 30, 1760–1770 (1983).
[CrossRef]

Rao, S.

O. Nayfeh, S. Rao, and A. Smith, “Thin film silicon nanoparticle UV photodetector,” IEEE Photon. Technol. Lett. 16, 127–129 (2004).
[CrossRef]

Riza, M.

C. Bracher, M. Kleber, and M. Riza, “Variational approach to the tunneling-time problem,” Phys. Rev. A 60, 1864–1873 (1999).
[CrossRef]

Rolver, R.

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

Rölver, R.

R. Rölver, B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz, “Lateral Si/SiO2 quantum well solar cells,” Appl. Phys. Lett. 92, 212108 (2008).
[CrossRef]

Rostami, A.

A. Rostami, H. Baghban, and H. Rasooli Saghai, “An ultra-high level second-order nonlinear optical susceptibility in strained asymmetric GaN─AlGaN─AlN quantum wells: towards all-optical devices and systems,” Microelectron. J. 38, 900–904 (2007).
[CrossRef]

Saghai, H. Rasooli

A. Rostami, H. Baghban, and H. Rasooli Saghai, “An ultra-high level second-order nonlinear optical susceptibility in strained asymmetric GaN─AlGaN─AlN quantum wells: towards all-optical devices and systems,” Microelectron. J. 38, 900–904 (2007).
[CrossRef]

Sakamoto, A.

A. Sakamoto and M. Sugawara, “Theoretical calculation of lasing spectra of quantum-dot Lasers: effect of homogeneous broadening of optical gain,” IEEE Photon. Technol. Lett. 12, 107–109 (2000).
[CrossRef]

Satish, R.

H. Nayfeh, R. Satish, O. M. Nayfeh, A. Smith, and J. Therrien, “UV photodetectors with thin-film Si nanoparticle active medium,” IEEE Trans. Nanotechnol. 4, 660–668 (2005).
[CrossRef]

Schmidt, M.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80, 661 (2002).
[CrossRef]

Schneider, H.

H. Schneider and K. V. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlGaAs As multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988).
[CrossRef]

Scholz, R.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80, 661 (2002).
[CrossRef]

Seino, K.

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

K. Seino, J. M. Wagner, and F. Bechstedt, “Quasiparticle effect on electron confinement in Si/SiO2 quantum-well structures,” Appl. Phys. Lett. 90, 253109 (2007).
[CrossRef]

Shen, W. Z.

W. Pan, J. Lu, J. Chen, and W. Z. Shen, “Resonant tunneling characteristics in crystalline silicon/nanocrystalline silicon heterostructure diodes,” Phys. Rev. B 74, 125308 (2006).
[CrossRef]

Shieh, J. M.

J. M. Shieh, Y. F. Lai, and W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer,” Appl. Phys. Lett. 90, 051105 (2007).
[CrossRef]

Smith, A.

H. Nayfeh, R. Satish, O. M. Nayfeh, A. Smith, and J. Therrien, “UV photodetectors with thin-film Si nanoparticle active medium,” IEEE Trans. Nanotechnol. 4, 660–668 (2005).
[CrossRef]

O. Nayfeh, S. Rao, and A. Smith, “Thin film silicon nanoparticle UV photodetector,” IEEE Photon. Technol. Lett. 16, 127–129 (2004).
[CrossRef]

Spangenberg, B.

R. Rölver, B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz, “Lateral Si/SiO2 quantum well solar cells,” Appl. Phys. Lett. 92, 212108 (2008).
[CrossRef]

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

Stern, F.

T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
[CrossRef]

G. Lasher and F. Stern, “Spontaneous and stimulated recombination radiation in semiconductors,” Phys. Rev. A 133, 553–563 (1964).

Sugawara, M.

A. Sakamoto and M. Sugawara, “Theoretical calculation of lasing spectra of quantum-dot Lasers: effect of homogeneous broadening of optical gain,” IEEE Photon. Technol. Lett. 12, 107–109 (2000).
[CrossRef]

Suzuki, J.

T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Phys. Rev. B 63, 195322 (2001).
[CrossRef]

Sze, S. M.

Takeda, E.

K. Imakita, M. Fujii, T. Nakanuro, S. Miura, E. Takeda, and S. Hayashi, “Enhancement of radiative recombination rate of excitons in Si nanocrystals on Au Film,” Jpn. J. Appl. Phys. 45, 6132–6136 (2006).
[CrossRef]

Tarr, G.

G. Tarr, D. Pvlfrey, and D. Camporsi, “An analytic model for the MIS tunnel junction,” IEEE Trans. Electron Devices 30, 1760–1770 (1983).
[CrossRef]

Therrien, J.

H. Nayfeh, R. Satish, O. M. Nayfeh, A. Smith, and J. Therrien, “UV photodetectors with thin-film Si nanoparticle active medium,” IEEE Trans. Nanotechnol. 4, 660–668 (2005).
[CrossRef]

Turan, R.

L. Pavesi and R. Turan, Silicon Nanocrystals: Fundamentals, Synthesis and Applications (Wiley-VCH, 2010).

Voon, Y.

L. C. Lew, Y. Voon, and M. Willatzen, The K.P Method: Electronic Properties of Semiconductors (Springer, 2009).

Wagner, J. M.

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

K. Seino, J. M. Wagner, and F. Bechstedt, “Quasiparticle effect on electron confinement in Si/SiO2 quantum-well structures,” Appl. Phys. Lett. 90, 253109 (2007).
[CrossRef]

Wang, Y. H.

Willatzen, M.

L. C. Lew, Y. Voon, and M. Willatzen, The K.P Method: Electronic Properties of Semiconductors (Springer, 2009).

Wolkin, M.

M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197–200(1999).
[CrossRef]

Yariv, A.

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p–i–n photodetectors: characteristics. theory, and applications,” IEEE J. Quantum Electron. 24, 787–801 (1988).
[CrossRef]

Yip, R. Y.-F.

R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
[CrossRef]

Zacharias, M.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80, 661 (2002).
[CrossRef]

Zhdan, A. G.

A. G. Zhdan, N. F. Kukharskaya, V. G. Naryshkina, and G. V. Chucheva, “Reconstruction of dependences of the tunneling current reconstruction of dependences of the tunneling current characteristics of the n+–Si–SiO2–n–Si heterostructures,” Semiconductors 41, 1117–1125 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

K. Seino, J. M. Wagner, and F. Bechstedt, “Quasiparticle effect on electron confinement in Si/SiO2 quantum-well structures,” Appl. Phys. Lett. 90, 253109 (2007).
[CrossRef]

J. M. Shieh, Y. F. Lai, and W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer,” Appl. Phys. Lett. 90, 051105 (2007).
[CrossRef]

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80, 661 (2002).
[CrossRef]

R. Rölver, B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz, “Lateral Si/SiO2 quantum well solar cells,” Appl. Phys. Lett. 92, 212108 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. M. Fox, A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p–i–n photodetectors: characteristics. theory, and applications,” IEEE J. Quantum Electron. 24, 787–801 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Højfeldt and J. Mørk, “Modeling of Carrier Dynamics in Quantum-Well Electroabsorption Modulators,” IEEE J. Sel. Top. Quantum Electron. 8, 1265–1276 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Sakamoto and M. Sugawara, “Theoretical calculation of lasing spectra of quantum-dot Lasers: effect of homogeneous broadening of optical gain,” IEEE Photon. Technol. Lett. 12, 107–109 (2000).
[CrossRef]

O. Nayfeh, S. Rao, and A. Smith, “Thin film silicon nanoparticle UV photodetector,” IEEE Photon. Technol. Lett. 16, 127–129 (2004).
[CrossRef]

IEEE Trans. Electron Devices (1)

G. Tarr, D. Pvlfrey, and D. Camporsi, “An analytic model for the MIS tunnel junction,” IEEE Trans. Electron Devices 30, 1760–1770 (1983).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

H. Nayfeh, R. Satish, O. M. Nayfeh, A. Smith, and J. Therrien, “UV photodetectors with thin-film Si nanoparticle active medium,” IEEE Trans. Nanotechnol. 4, 660–668 (2005).
[CrossRef]

J. Appl. Phys. (7)

S. G. Matsik and A. G. Perera, “Self-consistent performance modeling for dual band detectors,” J. Appl. Phys. 104, 044502 (2008).
[CrossRef]

B. F. Levine and H. Murray, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).

S. M. Hossain, A. Anopchenko, S. Prezioso, and L. Ferraioli, “Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device,” J. Appl. Phys. 104, 074917 (2008).
[CrossRef]

S. E. Laux, A. Kumar, and M. V. Fischetti, “Analysis of quantum ballistic electron transport in ultra-small semiconductor devices including space-charge effects,” J. Appl. Phys. 95, 1695597 (2004).
[CrossRef]

R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998).
[CrossRef]

Y. Ando and T. Itoh, “Calculation of transmission tunneling current across arbitrary potential barriers,” J. Appl. Phys. 61, 1497–1502 (1987).
[CrossRef]

C. Jiang, M. Green, and Silicon quantum dot superlattices, “Modeling of energy bands, densities of states, and mobilities for silicon tandem solarcell applications,” J. Appl. Phys. 99, 114902 (2006).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Imakita, M. Fujii, T. Nakanuro, S. Miura, E. Takeda, and S. Hayashi, “Enhancement of radiative recombination rate of excitons in Si nanocrystals on Au Film,” Jpn. J. Appl. Phys. 45, 6132–6136 (2006).
[CrossRef]

Microelectron. J. (1)

A. Rostami, H. Baghban, and H. Rasooli Saghai, “An ultra-high level second-order nonlinear optical susceptibility in strained asymmetric GaN─AlGaN─AlN quantum wells: towards all-optical devices and systems,” Microelectron. J. 38, 900–904 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. E (1)

L. DeXing, L. Linhan, and J. Feng, “Electronic state and momentum matrix of H-passivated silicon nanonets: A first-principles calculation,” Phys. E 42, 1583–1589 (2010).
[CrossRef]

Phys. Rev. A (2)

C. Bracher, M. Kleber, and M. Riza, “Variational approach to the tunneling-time problem,” Phys. Rev. A 60, 1864–1873 (1999).
[CrossRef]

G. Lasher and F. Stern, “Spontaneous and stimulated recombination radiation in semiconductors,” Phys. Rev. A 133, 553–563 (1964).

Phys. Rev. B (4)

H. Schneider and K. V. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlGaAs As multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988).
[CrossRef]

G. Allan and C. Delerue, “Energy transfer between semiconductor nanocrystals: validity of Förster’s theory,” Phys. Rev. B 75, 1953112007.
[CrossRef]

T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Phys. Rev. B 63, 195322 (2001).
[CrossRef]

W. Pan, J. Lu, J. Chen, and W. Z. Shen, “Resonant tunneling characteristics in crystalline silicon/nanocrystalline silicon heterostructure diodes,” Phys. Rev. B 74, 125308 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197–200(1999).
[CrossRef]

Physica E (1)

C. Flynn, D. König, M. A. Green, and G. Conibeer, “Modeling of metal—insulator—semiconductor devices featuring a silicon quantum well,” Physica E 42, 2211–2217 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
[CrossRef]

Semicond. Sci. Technol. (1)

M. Depas, R. L. Meirhaeghe, W. H. Laflere, and F. Cardon, “A quantitative analysis of capacitance peaks in the impedance of Al/SiOx/p–Si tunnel diodes,” Semicond. Sci. Technol. 7, 1476–1483 (1992).
[CrossRef]

Semiconductors (1)

A. G. Zhdan, N. F. Kukharskaya, V. G. Naryshkina, and G. V. Chucheva, “Reconstruction of dependences of the tunneling current reconstruction of dependences of the tunneling current characteristics of the n+–Si–SiO2–n–Si heterostructures,” Semiconductors 41, 1117–1125 (2007).
[CrossRef]

Other (6)

A. F. J. Levi, Applied Quantum Mechanics (Cambridge University, 2006).

L. Pavesi and R. Turan, Silicon Nanocrystals: Fundamentals, Synthesis and Applications (Wiley-VCH, 2010).

M. F. Iskander, Electromagnetic Fields and Waves (Prentice-Hall, 1992).

L. C. Lew, Y. Voon, and M. Willatzen, The K.P Method: Electronic Properties of Semiconductors (Springer, 2009).

N. W. Ashcroft and N. D. Mermin, Solid State Physics(Philadelphia, Saunders College, 1976).

P. Carrier, J. Lewis, and D. Harma-wardana, “Optical properties of structurally-relaxed Si/SiO2 superlattices: the role of bonding at interfaces,” http://arxiv.org/abs/cond-mat/0111259 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Layer formation of a MIS photodetector featuring a multibarrier insulating layer.

Fig. 2.
Fig. 2.

Band structure of a MIS photodetector featuring a multibarrier insulating layer. The substrate is p-type Si and the top contact is degenerately doped n-type Si. The voltage (V) applied to the top n+ Si contact with respect to the p-type Si substrate is positive. Jcm, Jmc, and Jd represent conventional current densities.

Fig. 3.
Fig. 3.

The photo-carrier transport processes and their interband transitions included in the model are shown under a reverse applied bias voltage (V=2V).

Fig. 4.
Fig. 4.

Interdependence of various parameters in self-consistent solution of absorption coefficient.

Fig. 5.
Fig. 5.

The absorption spectrum of a dual band Si/SiO2 QW UV photodetector under a reverse applied bias voltage (V=2V).

Fig. 6.
Fig. 6.

Current-voltage characteristics of our UV detector’s model in the dark and illuminated by 365 nm light of 100 μW.

Fig. 7.
Fig. 7.

The responsivity spectrum of a dual band Si/SiO2 QW UV photodetector under a reverse applied bias voltage (V=2V).

Fig. 8.
Fig. 8.

The detectivity, D*, versus temperature for two different wavelength peaks, one at around 175 nm and one at around 365 nm.

Fig. 9.
Fig. 9.

Dark current-voltage characteristics for three different Si quantum well widths: 1.5, 1.2, 0.9 nm.

Fig. 10.
Fig. 10.

Dark current-voltage characteristics of our dual band UV detector’s model for various temperatures: 50, 100, 200, 300 K.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

22ddz(1m(z)ddz)ψ(z)+V(z)ψ(z)=Eψ(z),
ddz(ε(z)ddz)ϕ(z)=e[ND(z)n(z)NA+p(z)nQW(z)+pQW(z)].
JcmJmc=Jd.
Jd=qDnτn[nsexp(qψs/kbT)n0]coth(LLn),
ns=NCexp(qΦsn/kbT),
JCMJMC=0qXscJ(Ex)dEx=qm0*2π2h30qXscT(Ex,ψI)×ExqXsc{11+exp[(E+qΔqψs+qV)KT]11+exp[(E+qϕsn)KT]}dEdEx.
V=ΦmχscΔ+ψs+ψI.
ψI=dεeffsign(ψs)2kTεs×NA[exp(qψskT)+qψskT1]+nsNCexp[q(ψs+Φsn)kT],
εeff=[(n+1)dbarεSiO2D+(n)dSiQWεSiD]1.
1τ2D,k=1τR,k+1τE,k+1τT,k,
1τE,k=(KBT2πm*LW2)1/2exp(H(ψI,k)KBT).
H(ψI,k)=ΔEcEi(n)ψI,k2,
1τT,k=π2LB2m*×Tk(Ex,ΨI,k),
α(k)(ω)=i,j1Lw(k)1ωπe2ε0cm02nM2mr2π2|Fi|Gj|·Bcv(ωωp)·(1fcfv).
Bcv(ωωp)=Γcv/π(ωωp)2+(Γcv)2.
NkPk=Ppumpωpα(k)(ωp)Lw(k),
Nk=nEnD(E)f(E)dE=m*πLw(k)2n[EFcEn+kbTln(1+eEFcEnkbT)].
je,photoout=ken2D,kτ2D,k.
Jphoto,ToT=0qXscje,photoout(Ex)dEx.
JTOT=Jdark+Jphoto.
R=Jphotoυ*p*cosθ.
in=[4eIdgΔf(1pc/2)]1/2.
D*=RpA1/2Δf1/2/in,

Metrics