Abstract

The core-mode cutoff plays a major role in evanescent field absorption based sensors. A method has been proposed to calculate the core-mode cutoff by solving the eigenvalue equations of a weakly guiding three layer optical waveguide graphically. The variation of normalized waveguide parameter (V) is also calculated with different wavelengths at core-mode cutoff. At the first step, theoretical analysis of tapered fiber parameters has been performed for core-mode cutoff. The taper angle of an adiabatic tapered fiber is also analyzed using the length-scale criterion. Secondly, single-mode tapered fiber has been developed to make a precision sensor element suitable for chemical detection. Finally, the sensor element has been used to detect absorption peak of ethylenediamine. Results are presented in which an absorption peak at 1540 nm is observed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
    [CrossRef]
  2. J. M. Corres, I. R. Matias, J. Bravo, and F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuators B 135, 166–171 (2008).
    [CrossRef]
  3. J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110, 23–27 (2005).
    [CrossRef]
  4. D. T. Cassidy, D. C. Johnson, and K. O. Hill, “Wavelength-dependent transmission of monomode optical fiber tapers,” Appl. Opt. 24, 945–950 (1985).
    [CrossRef]
  5. V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
    [CrossRef]
  6. B. D. Gupta and C. D. Singh, “Evanescent-absorption coefficient for diffuse source illumination: uniform- and tapered-fiber sensors,” Appl. Opt. 33, 2737–2742 (1994).
    [CrossRef]
  7. D. Qing, X. Chen, K. Itoh, and M. Murabayashi, “A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method,” J. Lightwave Technol. 14, 1907–1917 (1996).
    [CrossRef]
  8. A. G. Mignani, R. Falciai, and L. Ciaccheri, “Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers,” Appl. Spectrosc. 52, 546–551 (1998).
    [CrossRef]
  9. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
    [CrossRef]
  10. S. Guo and S. Albin, “Transmission property and evanescent wave absorption of cladded multimode fiber tapers,” Opt. Express 11, 215–223 (2003).
    [CrossRef]
  11. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  12. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices part 1: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138,343–354 (1991).
    [CrossRef]
  13. E. T. Goodwin, “Recurrence relations for cross-products of Bessel functions,” Q. J. Mech. Appl. Math. 11, 72–74 (1949).
    [CrossRef]
  14. R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite-cladding lightguides,” IEE Proc. J. 133, 377–384 (1986).
    [CrossRef]
  15. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).
  16. R. P. Viscidi, C. J. Connelly, and R. H. Yolken, “Novel chemical method for the preparation of nucleic acids for nonisotopic hybridization,” J. Clin. Microbiol. 23, 311–317 (1986).
  17. D. Proudnikov and A. Mirzabekov, “Chemical methods of DNA and RNA fluorescent labeling,” Nucleic Acids Res. 24, 4535–4542 (1996).
    [CrossRef]

2008 (1)

J. M. Corres, I. R. Matias, J. Bravo, and F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuators B 135, 166–171 (2008).
[CrossRef]

2005 (1)

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110, 23–27 (2005).
[CrossRef]

2004 (1)

P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
[CrossRef]

2003 (1)

1999 (1)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

1998 (1)

1996 (2)

D. Proudnikov and A. Mirzabekov, “Chemical methods of DNA and RNA fluorescent labeling,” Nucleic Acids Res. 24, 4535–4542 (1996).
[CrossRef]

D. Qing, X. Chen, K. Itoh, and M. Murabayashi, “A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method,” J. Lightwave Technol. 14, 1907–1917 (1996).
[CrossRef]

1994 (1)

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices part 1: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138,343–354 (1991).
[CrossRef]

1990 (1)

V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

1986 (2)

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite-cladding lightguides,” IEE Proc. J. 133, 377–384 (1986).
[CrossRef]

R. P. Viscidi, C. J. Connelly, and R. H. Yolken, “Novel chemical method for the preparation of nucleic acids for nonisotopic hybridization,” J. Clin. Microbiol. 23, 311–317 (1986).

1985 (1)

1949 (1)

E. T. Goodwin, “Recurrence relations for cross-products of Bessel functions,” Q. J. Mech. Appl. Math. 11, 72–74 (1949).
[CrossRef]

Albin, S.

Arregui, F. J.

J. M. Corres, I. R. Matias, J. Bravo, and F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuators B 135, 166–171 (2008).
[CrossRef]

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices part 1: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138,343–354 (1991).
[CrossRef]

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite-cladding lightguides,” IEE Proc. J. 133, 377–384 (1986).
[CrossRef]

Bourbonnais, R.

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite-cladding lightguides,” IEE Proc. J. 133, 377–384 (1986).
[CrossRef]

Bravo, J.

J. M. Corres, I. R. Matias, J. Bravo, and F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuators B 135, 166–171 (2008).
[CrossRef]

Cassidy, D. T.

Chen, X.

D. Qing, X. Chen, K. Itoh, and M. Murabayashi, “A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method,” J. Lightwave Technol. 14, 1907–1917 (1996).
[CrossRef]

Ciaccheri, L.

Connelly, C. J.

R. P. Viscidi, C. J. Connelly, and R. H. Yolken, “Novel chemical method for the preparation of nucleic acids for nonisotopic hybridization,” J. Clin. Microbiol. 23, 311–317 (1986).

Corres, J. M.

J. M. Corres, I. R. Matias, J. Bravo, and F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuators B 135, 166–171 (2008).
[CrossRef]

Falciai, R.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices part 1: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138,343–354 (1991).
[CrossRef]

Goodwin, E. T.

E. T. Goodwin, “Recurrence relations for cross-products of Bessel functions,” Q. J. Mech. Appl. Math. 11, 72–74 (1949).
[CrossRef]

Guo, S.

Gupta, B. D.

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

B. D. Gupta and C. D. Singh, “Evanescent-absorption coefficient for diffuse source illumination: uniform- and tapered-fiber sensors,” Appl. Opt. 33, 2737–2742 (1994).
[CrossRef]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices part 1: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138,343–354 (1991).
[CrossRef]

Hill, K. O.

Itoh, K.

D. Qing, X. Chen, K. Itoh, and M. Murabayashi, “A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method,” J. Lightwave Technol. 14, 1907–1917 (1996).
[CrossRef]

Johnson, D. C.

Khijwania, S. K.

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices part 1: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138,343–354 (1991).
[CrossRef]

Lehmann, K. K.

P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices part 1: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138,343–354 (1991).
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Luna-Moreno, D.

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110, 23–27 (2005).
[CrossRef]

MacCraith, B. D.

V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Matias, I. R.

J. M. Corres, I. R. Matias, J. Bravo, and F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuators B 135, 166–171 (2008).
[CrossRef]

Mignani, A. G.

Mirzabekov, A.

D. Proudnikov and A. Mirzabekov, “Chemical methods of DNA and RNA fluorescent labeling,” Nucleic Acids Res. 24, 4535–4542 (1996).
[CrossRef]

Monzon-Hernandez, D.

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110, 23–27 (2005).
[CrossRef]

Murabayashi, M.

D. Qing, X. Chen, K. Itoh, and M. Murabayashi, “A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method,” J. Lightwave Technol. 14, 1907–1917 (1996).
[CrossRef]

Murphy, J. A.

V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Proudnikov, D.

D. Proudnikov and A. Mirzabekov, “Chemical methods of DNA and RNA fluorescent labeling,” Nucleic Acids Res. 24, 4535–4542 (1996).
[CrossRef]

Qing, D.

D. Qing, X. Chen, K. Itoh, and M. Murabayashi, “A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method,” J. Lightwave Technol. 14, 1907–1917 (1996).
[CrossRef]

Rabinowitz, P.

P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
[CrossRef]

Ruddy, V.

V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Singh, C. D.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices part 1: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138,343–354 (1991).
[CrossRef]

Tarsa, P. B.

P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
[CrossRef]

Villatoro, J.

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110, 23–27 (2005).
[CrossRef]

Viscidi, R. P.

R. P. Viscidi, C. J. Connelly, and R. H. Yolken, “Novel chemical method for the preparation of nucleic acids for nonisotopic hybridization,” J. Clin. Microbiol. 23, 311–317 (1986).

Yolken, R. H.

R. P. Viscidi, C. J. Connelly, and R. H. Yolken, “Novel chemical method for the preparation of nucleic acids for nonisotopic hybridization,” J. Clin. Microbiol. 23, 311–317 (1986).

Appl. Opt. (2)

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
[CrossRef]

IEE Proc. J. (1)

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite-cladding lightguides,” IEE Proc. J. 133, 377–384 (1986).
[CrossRef]

IEE Proc. J. Optoelectron. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices part 1: adiabaticity criteria,” IEE Proc. J. Optoelectron. 138,343–354 (1991).
[CrossRef]

J. Appl. Phys. (1)

V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

J. Clin. Microbiol. (1)

R. P. Viscidi, C. J. Connelly, and R. H. Yolken, “Novel chemical method for the preparation of nucleic acids for nonisotopic hybridization,” J. Clin. Microbiol. 23, 311–317 (1986).

J. Lightwave Technol. (2)

D. Qing, X. Chen, K. Itoh, and M. Murabayashi, “A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method,” J. Lightwave Technol. 14, 1907–1917 (1996).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Nucleic Acids Res. (1)

D. Proudnikov and A. Mirzabekov, “Chemical methods of DNA and RNA fluorescent labeling,” Nucleic Acids Res. 24, 4535–4542 (1996).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

Q. J. Mech. Appl. Math. (1)

E. T. Goodwin, “Recurrence relations for cross-products of Bessel functions,” Q. J. Mech. Appl. Math. 11, 72–74 (1949).
[CrossRef]

Sens. Actuators B (2)

J. M. Corres, I. R. Matias, J. Bravo, and F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuators B 135, 166–171 (2008).
[CrossRef]

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110, 23–27 (2005).
[CrossRef]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Plot of the eigenvalue equation before core-mode cutoff.

Fig. 2.
Fig. 2.

Plot of Vcc versus wavelength

Fig. 3.
Fig. 3.

Plot of the eigenvalue equation after core-mode cutoff.

Fig. 4.
Fig. 4.

Schematic fabrication setup for tapered fiber.

Fig. 5.
Fig. 5.

Photograph of a tapered fiber (taper 4).

Fig. 6.
Fig. 6.

Photograph of waist diameter of the tapered fiber (taper 5).

Fig. 7.
Fig. 7.

Geometrical profile of taper 5, showing waist diameter 9.28 µm with taper length 20.04 mm.

Fig. 8.
Fig. 8.

(a) Delineation curve of cladding taper angle and (b) cladding taper angle of taper 5, with inverse taper ratio.

Fig. 9.
Fig. 9.

Schematic of a biconically tapered fiber.

Fig. 10.
Fig. 10.

Fraction of modal power in the external medium.

Fig. 11.
Fig. 11.

Experimental setup for the detection of chemicals.

Fig. 12.
Fig. 12.

Transmission spectrum with and without EDA on taper 5.

Fig. 13.
Fig. 13.

Transmission spectrum with EDA on taper 6.

Fig. 14.
Fig. 14.

Transmission spectra of tapered fiber with EDA as the chemical (taper 5), in different intervals of time.

Tables (1)

Tables Icon

Table 1. Geometric Parameters of Tapers

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

2φr2+1rφr+1r22φϕ2+[(n2(r)neff2)k02]φ=0.
r22ψr2+rψr+[(n2(r)neff2)k02r2l2]ψ=0,
ψco=AJl(U1rρ0),
ψcl=BIl(W2rρ0)+CKl(W2rρ0),
ψcl=BJl(U2rρ0)+CYl(U2rρ0),
ψex=DKl(W3rρ1),
U1=ρ0(k02nco2β2)1/2,
U2=ρ0(k02ncl2β2)1/2,
W2=ρ0(β2k02ncl2)1/2,
W3=ρ1(β2k02nex2)1/2,
U1W3ρ1JKplU1W2W3ρ0Jrl=W2W3U1ρ1KqlW22U1W3ρ0sl,
J=Jl(U1)U1Jl(U1)andK=Kl(W3)W3Kl(W3).
pl=Il(W2R)Kl(W2)Il(W2)Kl(W2R),
ql=Il(W2R)Kl(W2)Il(W2)Kl(W2R),
rl=Il(W2R)Kl(W2)Il(W2)Kl(W2R),
sl=Il(W2R)Kl(W2)Il(W2)Kl(W2R),
Vcc(2lnR).
U1W3ρ1JKalU1U2W3ρ0Jcl=U2W3U1ρ1KblU22U1W3ρ0dl,
al=Jl(U2R)Yl(U2)Jl(U2)Yl(U2R),
bl=Jl(U2R)Yl(U2)Jl(U2)Yl(U2R),
cl=Jl(U2R)Yl(U2)Jl(U2)Yl(U2R),
dl=Jl(U2R)Yl(U2)Jl(U2)Yl(U2R).
Ω=ρ(β01β02)2π(length-scale criterion),
Ω=1ρ(β01β02)2π(weak-power transfer criterion),
=Cρ/dρdz,
ηcl=PclPtot=U2V2{W2U2+K02(W)K12(W)},
U=ρ1(k02ncl2β2)1/2,
W=ρ1(β2k02nex2)1/2,
V=ρ1(k02ncl2k02nex2)1/2.
ηex=PexPtot=1PclPtot=1U2V2{W2U2+K02(W)K12(W)}.

Metrics