Abstract

Spatially resolved spectroscopic optical coherence tomography (OCT) has been demonstrated to be a convenient tool for spectral analysis in turbid media. For a full-field OCT configuration using a Mirau objective in the visible range, we found that the effective numerical aperture varies over the field of view, leading to field-dependent spectral shifts in the reconstructed spectra. Interferograms recorded with quasi-monochromatic lights are theoretically fitted with a general Mirau interference formula, and we propose a numerical correction method for white-light spectroscopy. The method is then tested successfully for the measure of the reflectivity of a plane gold sample.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Progr. Phys. 66, 239–303 (2003).
    [CrossRef]
  3. P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1–9 (2008).
    [CrossRef]
  4. G. Latour, J.-P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48, 6485–6491 (2009).
    [CrossRef]
  5. M. Kulkarni and J. Izatt, “Spectroscopic optical coherence tomography,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, 1996), pp. 59–60.
  6. U. Morgner, W. Drexler, F. X. Krtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [CrossRef]
  7. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
    [CrossRef]
  8. A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
    [CrossRef]
  9. D. Adler, T. Ko, P. Herz, and J. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12, 5487–5501 (2004).
    [CrossRef]
  10. G. Latour, J. Moreau, M. Elias, and J.-M. Frigerio, “Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers,” Opt. Commun. 283, 4810–4815 (2010).
    [CrossRef]
  11. C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13, 5450–5462 (2005).
    [CrossRef]
  12. J. Yi, J. Gong, and X. Li, “Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography,” Opt. Express 17, 13157–13167(2009).
    [CrossRef]
  13. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  14. A. Dubois, J. Selb, L. Vabre, and A.-C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2326–2331 (2000).
    [CrossRef]
  15. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
    [CrossRef]
  16. I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
    [CrossRef]
  17. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31, 1079–1081 (2006).
    [CrossRef]
  18. G. Schulz and K.-E. Elssner, “Errors in phase-measurement interferometry with high numerical apertures,” Appl. Opt. 30, 4500–4506 (1991).
    [CrossRef]
  19. K. Creath, “Calibration of numerical aperture effects in interferometric microscope objectives,” Appl. Opt. 28, 3333–3338 (1989).
    [CrossRef]
  20. F. R. Tolmon and J. G. Wood “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956).
    [CrossRef]
  21. D.-S. Wan, J. Schmit, and E. Novak, “Effects of source shape on the numerical aperture factor with a geometrical-optics model,” Appl. Opt. 43, 2023–2028 (2004).
    [CrossRef]
  22. J. F. Biegen, “Calibration requirements for Mirau and Linnik microscope interferometers,” Appl. Opt. 28, 1972–1974(1989).
    [CrossRef]
  23. T. Doi, K. Toyoda, and Y. Tanimura, “Effects of phase changes on reflection and their wavelength dependence in optical profilometry,” Appl. Opt. 36, 7157–7161 (1997).
    [CrossRef]
  24. A. Dubois, “Effects of phase change on reflection in phase-measuring interference microscopy,” Appl. Opt. 43, 1503–1507 (2004).
    [CrossRef]

2010 (1)

G. Latour, J. Moreau, M. Elias, and J.-M. Frigerio, “Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers,” Opt. Commun. 283, 4810–4815 (2010).
[CrossRef]

2009 (2)

2008 (2)

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
[CrossRef]

2006 (2)

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[CrossRef]

C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31, 1079–1081 (2006).
[CrossRef]

2005 (1)

2004 (3)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Progr. Phys. 66, 239–303 (2003).
[CrossRef]

2002 (1)

2000 (3)

1998 (1)

1997 (1)

1991 (2)

G. Schulz and K.-E. Elssner, “Errors in phase-measurement interferometry with high numerical apertures,” Appl. Opt. 30, 4500–4506 (1991).
[CrossRef]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1989 (2)

1956 (1)

F. R. Tolmon and J. G. Wood “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[CrossRef]

Adler, D.

Beaurepaire, E.

Biegen, J. F.

Blanchot, L.

Boccara, A. C.

Boccara, A.-C.

Boccara, C.

Boppart, S.

Boppart, S. A.

Carney, P.

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Creath, K.

Doi, T.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Progr. Phys. 66, 239–303 (2003).
[CrossRef]

U. Morgner, W. Drexler, F. X. Krtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

Dubois, A.

Echard, J.-P.

Elias, M.

G. Latour, J. Moreau, M. Elias, and J.-M. Frigerio, “Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers,” Opt. Commun. 283, 4810–4815 (2010).
[CrossRef]

G. Latour, J.-P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48, 6485–6491 (2009).
[CrossRef]

Elssner, K.-E.

Emond, I.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Progr. Phys. 66, 239–303 (2003).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[CrossRef]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Frigerio, J.-M.

G. Latour, J. Moreau, M. Elias, and J.-M. Frigerio, “Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers,” Opt. Commun. 283, 4810–4815 (2010).
[CrossRef]

Fujimoto, J.

Fujimoto, J. G.

Gong, J.

Góra, M.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Herz, P.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Progr. Phys. 66, 239–303 (2003).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[CrossRef]

Huang, D.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Ippen, E. P.

Izatt, J.

M. Kulkarni and J. Izatt, “Spectroscopic optical coherence tomography,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, 1996), pp. 59–60.

Ko, T.

Kowalczyk, A.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000).
[CrossRef]

Krtner, F. X.

Kulkarni, M.

M. Kulkarni and J. Izatt, “Spectroscopic optical coherence tomography,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, 1996), pp. 59–60.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Progr. Phys. 66, 239–303 (2003).
[CrossRef]

Latour, G.

G. Latour, J. Moreau, M. Elias, and J.-M. Frigerio, “Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers,” Opt. Commun. 283, 4810–4815 (2010).
[CrossRef]

G. Latour, J.-P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48, 6485–6491 (2009).
[CrossRef]

Lebec, M.

Leitgeb, R.

Li, X.

Li, X. D.

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Luo, W.

Marczak, J.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

Moreau, J.

G. Latour, J. Moreau, M. Elias, and J.-M. Frigerio, “Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers,” Opt. Commun. 283, 4810–4815 (2010).
[CrossRef]

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008).
[CrossRef]

Morgner, U.

Novak, E.

Pitris, C.

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Ralston, T. S.

Rouba, B.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

Saint-Jalmes, H.

Schmit, J.

Schulz, G.

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Selb, J.

Soulier, B.

Sticker, M.

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Tan, W.

Tanimura, Y.

Targowski, P.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

Tolmon, F. R.

F. R. Tolmon and J. G. Wood “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956).
[CrossRef]

Toyoda, K.

Tyminska-Widmer, L.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

Vabre, L.

Vaiedelich, S.

Vinegoni, C.

Wan, D.-S.

Wojtkowski, M.

Wood, J. G.

F. R. Tolmon and J. G. Wood “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956).
[CrossRef]

Xu, C.

Yi, J.

Appl. Opt. (9)

G. Latour, J.-P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48, 6485–6491 (2009).
[CrossRef]

A. Dubois, J. Selb, L. Vabre, and A.-C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2326–2331 (2000).
[CrossRef]

A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
[CrossRef]

D.-S. Wan, J. Schmit, and E. Novak, “Effects of source shape on the numerical aperture factor with a geometrical-optics model,” Appl. Opt. 43, 2023–2028 (2004).
[CrossRef]

J. F. Biegen, “Calibration requirements for Mirau and Linnik microscope interferometers,” Appl. Opt. 28, 1972–1974(1989).
[CrossRef]

T. Doi, K. Toyoda, and Y. Tanimura, “Effects of phase changes on reflection and their wavelength dependence in optical profilometry,” Appl. Opt. 36, 7157–7161 (1997).
[CrossRef]

A. Dubois, “Effects of phase change on reflection in phase-measuring interference microscopy,” Appl. Opt. 43, 1503–1507 (2004).
[CrossRef]

G. Schulz and K.-E. Elssner, “Errors in phase-measurement interferometry with high numerical apertures,” Appl. Opt. 30, 4500–4506 (1991).
[CrossRef]

K. Creath, “Calibration of numerical aperture effects in interferometric microscope objectives,” Appl. Opt. 28, 3333–3338 (1989).
[CrossRef]

Appl. Phys. A (1)

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1–9 (2008).
[CrossRef]

J. Opt. A (1)

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006).
[CrossRef]

J. Sci. Instrum. (1)

F. R. Tolmon and J. G. Wood “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956).
[CrossRef]

Opt. Commun. (1)

G. Latour, J. Moreau, M. Elias, and J.-M. Frigerio, “Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers,” Opt. Commun. 283, 4810–4815 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Rep. Progr. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Progr. Phys. 66, 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Other (1)

M. Kulkarni and J. Izatt, “Spectroscopic optical coherence tomography,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, 1996), pp. 59–60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup. The percentage numbers indicated for each beam splitter are the different ideal sample reflections for which the fringe contrast is optimized.

Fig. 2.
Fig. 2.

Spectral transfer function of the device measured by OCT (dotted line) and transmittance spectrum of the interferential filter Tf measured with a spectrometer (solid line).

Fig. 3.
Fig. 3.

(x,z) OCT intensity measurement in the plane y=0. Line (a) marks position x=0μm [profile shown Fig. 4(a)]. Line (b) marks position x=80μm [profile shown in Fig. 4(b)].

Fig. 4.
Fig. 4.

(a) Interferogram at (x=0, y=0) [profile (a) of Fig. 3]. (b) Interferogram at (x=80μm, y=0) [profile (b) of Fig. 3].

Fig. 5.
Fig. 5.

(a) Normalized fringe spacing measured on each point of the field of view. (b) Normalized fringe spacing measured in the plane y=0 for different wavelengths.

Fig. 6.
Fig. 6.

Variation of the center of mass in the field before correction (red) and after correction (green).

Fig. 7.
Fig. 7.

Reflectivity of a gold sample in (x=0, y=0) measured by OCT with the scale correction and with a spectrometer.

Fig. 8.
Fig. 8.

Statistical analysis of the OCT reflectivity overall the field of view with no correction (a) and with correction (b). The average reflectivity (solid curve) with its standard deviation calculated for every wavelength of the spectrum (dashed curve) is compared to the spectrum made with a spectrometer (shaded curve).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ΔI(z)λθminθmaxcos(2kzcosθ+φ)×cosθsinθdθ,
ΔI(z)λsin[kz(cosθmincosθmax)]kz(cosθmincosθmax)cos[kz(cosθmin+cosθmax)+φ].
FWHMMirau0.6λcosθmincosθmax.
SOCT(λ)=RS(λ)RRMSS(λ).
RS(λ)=1RRM[SOCT(λ)SD(λ)]2.
SOCT(x,y,λ)=RS(λ)RRMSD(x,y,λ).
ΔI(z)ν=0θminθmaxTf(ν)cos(4πcνzcosθ+φ)×cosθsinθdθdν.
βMirau=Λλ2cosθmin+cosθmax.
S˜OCT(x,y,λ)=SOCT(x,y,λβ(x,y)).
Rgold(0,0,λ)=1RRM[S˜OCT(0,0,λ)S˜D(0,0,λ)]2.

Metrics