Abstract

The optical performances of the all-optical switching based on Yb3+-doped fiber Bragg grating (FBG) are investigated under the case of self-phase modulation (SPM) and cross-phase modulation (XPM). For the SPM case, the optical bistability of FBG under different parameters is investigated. It shows that the width of the hysteresis loop and threshold switching power are strongly dependent on the fiber grating length, fiber grating detuning, and coupling constant. For the XPM case, the expressions of the threshold switching power in the different detuning range are given. The influence of parameters about different detuning and coupling constant to the threshold switching power and extinction ratio are also studied. In comparison with the SPM case, the switching power of FBG under XPM case can be reduced to less than 20 mW by optimizing the parameters of FBG.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, “Dense wavelength-division multiplexing dispersion compensators based on chirped and apodized Fibonacci structures: CA-FC(j,n),” Appl. Opt. 47, 6477–6487 (2008).
    [CrossRef]
  2. Y. H. Choi, S. W. Seo, and H. Y. Jeong, “Wavelength-division-multiplexing optical packet switch with heterogeneous wavelength conversion capabilities,” Appl. Opt. 46, 8218–8228 (2007).
    [CrossRef]
  3. H. Yildirim and C. Bulutay, “Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment,” Opt. Commun. 281, 6146–6147 (2008).
    [CrossRef]
  4. A. K. Sarma, “Self-switching of solitons in an AlGaAs nanowire coupler,” Appl. Opt. 48, 5067–5071 (2009).
    [CrossRef]
  5. Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 1031061 (2011).
    [CrossRef]
  6. C. F. Li and Z. G. Zang, “Optical switching in a nonlinear-fiber connected long-period fiber grating pair,” Chin. J. Lasers 35, 1919–1923 (2008).
    [CrossRef]
  7. H. C. Nguyen, D. Y. E. Mägi, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear switching using long-period gratings in As2Se3 chalcogenide fiber,” J. Opt. Soc. Am. B 25, 1393–1401 (2008).
    [CrossRef]
  8. J. P. Carvalho, O. Frazão, R. Romero, M. B. Marques, and H. M. Salgado, “Fibre Bragg grating switching behaviour using high-power pump laser diodes,” Microw. Opt. Technol. Lett. 48, 1538–1540 (2006).
    [CrossRef]
  9. H. Alatas, A. A. Iskandar, M. O. Tjia, and T. P. Valkering, “Optical sensing and switching device based on a finite deep nonlinear Bragg grating with a mirror,” J. Nonlin. Opt. Phys. Mater. 14, 259–272 (2005).
    [CrossRef]
  10. N. Broderick, D. Taverner, and D. Richardson, “Nonlinear switching in fiber Bragg gratings,” Opt. Express 3, 447–453 (1998).
    [CrossRef]
  11. C. M. de Sterke, “Optical push broom,” Opt. Lett. 17, 914–916 (1992).
    [CrossRef]
  12. Y. Yosia, S. Ping, and L. Chao, “Bistability threshold inside hysteresis loop of nonlinear fiber Bragg gratings,” Opt. Express 13, 5127–5135 (2005).
    [CrossRef]
  13. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806 (1998).
    [CrossRef]
  14. R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
    [CrossRef]

2011 (1)

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 1031061 (2011).
[CrossRef]

2009 (1)

2008 (4)

H. C. Nguyen, D. Y. E. Mägi, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear switching using long-period gratings in As2Se3 chalcogenide fiber,” J. Opt. Soc. Am. B 25, 1393–1401 (2008).
[CrossRef]

S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, “Dense wavelength-division multiplexing dispersion compensators based on chirped and apodized Fibonacci structures: CA-FC(j,n),” Appl. Opt. 47, 6477–6487 (2008).
[CrossRef]

C. F. Li and Z. G. Zang, “Optical switching in a nonlinear-fiber connected long-period fiber grating pair,” Chin. J. Lasers 35, 1919–1923 (2008).
[CrossRef]

H. Yildirim and C. Bulutay, “Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment,” Opt. Commun. 281, 6146–6147 (2008).
[CrossRef]

2007 (1)

2006 (1)

J. P. Carvalho, O. Frazão, R. Romero, M. B. Marques, and H. M. Salgado, “Fibre Bragg grating switching behaviour using high-power pump laser diodes,” Microw. Opt. Technol. Lett. 48, 1538–1540 (2006).
[CrossRef]

2005 (2)

H. Alatas, A. A. Iskandar, M. O. Tjia, and T. P. Valkering, “Optical sensing and switching device based on a finite deep nonlinear Bragg grating with a mirror,” J. Nonlin. Opt. Phys. Mater. 14, 259–272 (2005).
[CrossRef]

Y. Yosia, S. Ping, and L. Chao, “Bistability threshold inside hysteresis loop of nonlinear fiber Bragg gratings,” Opt. Express 13, 5127–5135 (2005).
[CrossRef]

1998 (2)

1993 (1)

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

1992 (1)

Alatas, H.

H. Alatas, A. A. Iskandar, M. O. Tjia, and T. P. Valkering, “Optical sensing and switching device based on a finite deep nonlinear Bragg grating with a mirror,” J. Nonlin. Opt. Phys. Mater. 14, 259–272 (2005).
[CrossRef]

Arkwright, J. W.

Atkins, G. R.

Broderick, N.

Bulutay, C.

H. Yildirim and C. Bulutay, “Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment,” Opt. Commun. 281, 6146–6147 (2008).
[CrossRef]

Carvalho, J. P.

J. P. Carvalho, O. Frazão, R. Romero, M. B. Marques, and H. M. Salgado, “Fibre Bragg grating switching behaviour using high-power pump laser diodes,” Microw. Opt. Technol. Lett. 48, 1538–1540 (2006).
[CrossRef]

Chao, L.

Choi, Y. H.

de Sterke, C. M.

Digonnet, M. J. F.

J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806 (1998).
[CrossRef]

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Eggleton, B. J.

Elango, P.

Frazão, O.

J. P. Carvalho, O. Frazão, R. Romero, M. B. Marques, and H. M. Salgado, “Fibre Bragg grating switching behaviour using high-power pump laser diodes,” Microw. Opt. Technol. Lett. 48, 1538–1540 (2006).
[CrossRef]

Golmohammadi, S.

Iskandar, A. A.

H. Alatas, A. A. Iskandar, M. O. Tjia, and T. P. Valkering, “Optical sensing and switching device based on a finite deep nonlinear Bragg grating with a mirror,” J. Nonlin. Opt. Phys. Mater. 14, 259–272 (2005).
[CrossRef]

Jeong, H. Y.

Kuhlmey, B. T.

Li, C. F.

C. F. Li and Z. G. Zang, “Optical switching in a nonlinear-fiber connected long-period fiber grating pair,” Chin. J. Lasers 35, 1919–1923 (2008).
[CrossRef]

Mägi, D. Y. E.

Marques, M. B.

J. P. Carvalho, O. Frazão, R. Romero, M. B. Marques, and H. M. Salgado, “Fibre Bragg grating switching behaviour using high-power pump laser diodes,” Microw. Opt. Technol. Lett. 48, 1538–1540 (2006).
[CrossRef]

Moravvej-Farshi, M. K.

Nguyen, H. C.

Pantell, R. H.

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Ping, S.

Richardson, D.

Romero, R.

J. P. Carvalho, O. Frazão, R. Romero, M. B. Marques, and H. M. Salgado, “Fibre Bragg grating switching behaviour using high-power pump laser diodes,” Microw. Opt. Technol. Lett. 48, 1538–1540 (2006).
[CrossRef]

Rostami, A.

Sadowski, R. W.

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Salgado, H. M.

J. P. Carvalho, O. Frazão, R. Romero, M. B. Marques, and H. M. Salgado, “Fibre Bragg grating switching behaviour using high-power pump laser diodes,” Microw. Opt. Technol. Lett. 48, 1538–1540 (2006).
[CrossRef]

Sarma, A. K.

Seo, S. W.

Shaw, H. J.

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Taverner, D.

Tjia, M. O.

H. Alatas, A. A. Iskandar, M. O. Tjia, and T. P. Valkering, “Optical sensing and switching device based on a finite deep nonlinear Bragg grating with a mirror,” J. Nonlin. Opt. Phys. Mater. 14, 259–272 (2005).
[CrossRef]

Valkering, T. P.

H. Alatas, A. A. Iskandar, M. O. Tjia, and T. P. Valkering, “Optical sensing and switching device based on a finite deep nonlinear Bragg grating with a mirror,” J. Nonlin. Opt. Phys. Mater. 14, 259–272 (2005).
[CrossRef]

Whitbread, T.

Yang, W. X.

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 1031061 (2011).
[CrossRef]

Yildirim, H.

H. Yildirim and C. Bulutay, “Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment,” Opt. Commun. 281, 6146–6147 (2008).
[CrossRef]

Yosia, Y.

Zang, Z. G.

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 1031061 (2011).
[CrossRef]

C. F. Li and Z. G. Zang, “Optical switching in a nonlinear-fiber connected long-period fiber grating pair,” Chin. J. Lasers 35, 1919–1923 (2008).
[CrossRef]

Zarifkar, A.

Appl. Opt. (3)

Chin. J. Lasers (1)

C. F. Li and Z. G. Zang, “Optical switching in a nonlinear-fiber connected long-period fiber grating pair,” Chin. J. Lasers 35, 1919–1923 (2008).
[CrossRef]

J. Appl. Phys. (1)

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 1031061 (2011).
[CrossRef]

J. Lightwave Technol. (2)

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806 (1998).
[CrossRef]

J. Nonlin. Opt. Phys. Mater. (1)

H. Alatas, A. A. Iskandar, M. O. Tjia, and T. P. Valkering, “Optical sensing and switching device based on a finite deep nonlinear Bragg grating with a mirror,” J. Nonlin. Opt. Phys. Mater. 14, 259–272 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

J. P. Carvalho, O. Frazão, R. Romero, M. B. Marques, and H. M. Salgado, “Fibre Bragg grating switching behaviour using high-power pump laser diodes,” Microw. Opt. Technol. Lett. 48, 1538–1540 (2006).
[CrossRef]

Opt. Commun. (1)

H. Yildirim and C. Bulutay, “Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment,” Opt. Commun. 281, 6146–6147 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of the FBG with the grating length of L under the SPM case.

Fig. 2.
Fig. 2.

Schematic of the proposed experimental setup for FBG under XPM.

Fig. 3.
Fig. 3.

Reflective spectrum shift because of the pump power.

Fig. 4.
Fig. 4.

Optical bistability loops of the FBG device under different grating lengths.

Fig. 5.
Fig. 5.

Optical bistability loops of the FBG device under different detuning.

Fig. 6.
Fig. 6.

Optical bistability loops of the FBG device under different coupling constant.

Fig. 7.
Fig. 7.

Characteristics of nonlinear optical switching of the FBG device with κL=8 and different detuning. Reflectivity (solid lines); Transmission (dashed lines).

Fig. 8.
Fig. 8.

Characteristics of nonlinear optical switching of the FBG device with δ=41.60cm1 and different κ. Reflectivity (solid lines), Transmission (dashed lines).

Fig. 9.
Fig. 9.

Reflectivity spectrum of an FBG with different κL.

Fig. 10.
Fig. 10.

Extinction ratio as a function of pump power.

Tables (1)

Tables Icon

Table 1. Device Parameter Values for Simulation

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Afz+ncAft=iδAf+iκAb+iγ(|Af|2+2|Ab|2)Af,
AbzncAbt=iδAbiκAfiγ(|Ab|2+2|Af|2)Ab,
n(z)=n0+n2I+Δncos(2βBz),
Af(z)=C1[exp(iVz)+exp(iWz)],
Ab(z)=C2[exp(iVz)+exp(iWz)],
V=γ(|Af|2+|Ab|2)+γ2(|Af|2+|Ab|2)2+4(q2+δX+Y)2,
W=γ(|Af|2+|Ab|2)γ2(|Af|2+|Ab|2)2+4(q2+δX+Y)2,
X=γ(I0+2|Af|2)
Y=γ2|Af|2(I0+|Af|2),
RNL=4κ2G2sin2φ[G2κ2]2+4κ2G2sin2φ,
Afz+ncAft=iδAf+iκAb+2iγPAf,
AbzncAbt=iδAbiκAf2iγPAb,
n=n0+2n2I,
Δλ=λκλBπn1+(πκL)2.
P=λAeffκ1+(πκL)2δ4n2π.
P=λκAeff4πn21+(πκL)2.
P=λAeffδκ1+(πκL)24n2π.
ΔϕNL=πe24hn0mεc2(n02+2)29λpλτSPabsAeffξ,
P=Pabs1exp(Pabs/AeffIp,sat),

Metrics