Abstract

Digital in-line holographic microscopy (DIHM) using point sources has been shown to be a versatile technique, especially for three-dimensional tracking of particles or microorganisms. However, the spherical source wave is altered when measurements are performed through layers with different refractive indices, such as water cuvettes. The situations where a layer of medium with a refractive index different than that of the predominant surrounding propagation medium (usually air) is situated behind or in front of the plane to be reconstructed are analyzed in detail, and a general approach for reconstruction under such circumstances is developed. The proposed refractive index correction is tested experimentally and compared to conventional reconstruction algorithms. Using 3D traces of swimming algal spores, the influence on the velocity calculation is also shown.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
    [CrossRef]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  3. H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, “Digital in-line holography with numerical reconstruction,” Proc. SPIE 3744, 65–74 (1999).
    [CrossRef]
  4. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
    [CrossRef]
  5. M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
    [CrossRef]
  6. J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. USA 107, 2082–2087 (2010).
    [CrossRef]
  7. N. I. Lewis, W. B. Xu, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, “Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography,” Phycologia 45, 61–70 (2006).
  8. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104, 17512–17517 (2007).
    [CrossRef]
  9. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003).
    [CrossRef]
  10. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
    [CrossRef]
  11. S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
    [CrossRef]
  12. T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).
    [CrossRef]
  13. A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
    [CrossRef]
  14. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [CrossRef]
  15. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef]
  16. M. H. Jericho and H. Jürgen Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 3–30.
  17. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31, 1211–1213 (2006).
    [CrossRef]
  18. M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).
    [CrossRef]
  19. F. Zhang, G. Pedrini, and W. Osten, “Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution,” Opt. Lett. 31, 1633–1635 (2006).
    [CrossRef]
  20. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
    [CrossRef]
  21. T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express 1, 610–616 (2010).
    [CrossRef]
  22. T. Zhang, and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
    [CrossRef]
  23. M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35, 217–219 (2010).
    [CrossRef]
  24. R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010).
    [CrossRef]
  25. M. Heydt, P. Divos, M. Grunze, and A. Rosenhahn, “Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces,” Eur. Phys. J. E 30, 141–148 (2009).
    [CrossRef]
  26. M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
    [CrossRef]
  27. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004).
    [CrossRef]

2011

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

2010

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. USA 107, 2082–2087 (2010).
[CrossRef]

R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010).
[CrossRef]

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35, 217–219 (2010).
[CrossRef]

T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express 1, 610–616 (2010).
[CrossRef]

2009

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).
[CrossRef]

M. Heydt, P. Divos, M. Grunze, and A. Rosenhahn, “Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces,” Eur. Phys. J. E 30, 141–148 (2009).
[CrossRef]

2008

2007

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104, 17512–17517 (2007).
[CrossRef]

2006

2005

2004

2003

2002

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

2001

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

1999

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
[CrossRef]

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, “Digital in-line holography with numerical reconstruction,” Proc. SPIE 3744, 65–74 (1999).
[CrossRef]

1998

1948

D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[CrossRef]

Adolf, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104, 17512–17517 (2007).
[CrossRef]

Adolf, J. E.

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. USA 107, 2082–2087 (2010).
[CrossRef]

Aspert, N.

Awatsuji, Y.

Baney, R.

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

Barth, R.

R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010).
[CrossRef]

Belas, R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104, 17512–17517 (2007).
[CrossRef]

Bevilacqua, F.

Blagrave, K.

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, “Digital in-line holography with numerical reconstruction,” Proc. SPIE 3744, 65–74 (1999).
[CrossRef]

Bourquin, S.

Brennan, A. B.

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

Callow, J. A.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

Callow, M. E.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

Cembella, A. D.

N. I. Lewis, W. B. Xu, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, “Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography,” Phycologia 45, 61–70 (2006).

Charriere, F.

Colomb, T.

Cuche, E.

Depeursinge, C.

Divos, P.

M. Heydt, P. Divos, M. Grunze, and A. Rosenhahn, “Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces,” Eur. Phys. J. E 30, 141–148 (2009).
[CrossRef]

Eisebitt, S.

R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010).
[CrossRef]

Feinberg, A.

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

Fujii, M.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[CrossRef]

Garcia-Sucerquia, J.

Gibson, A.

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

Graulig, C.

Grunze, M.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010).
[CrossRef]

M. Heydt, P. Divos, M. Grunze, and A. Rosenhahn, “Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces,” Eur. Phys. J. E 30, 141–148 (2009).
[CrossRef]

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

Haraszti, T.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Heydt, M.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

M. Heydt, P. Divos, M. Grunze, and A. Rosenhahn, “Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces,” Eur. Phys. J. E 30, 141–148 (2009).
[CrossRef]

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

Hinsch, K. D.

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

Ito, K.

Jennings, A. R.

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

Jericho, M. H.

N. I. Lewis, W. B. Xu, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, “Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography,” Phycologia 45, 61–70 (2006).

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31, 1211–1213 (2006).
[CrossRef]

W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, “Digital in-line holography with numerical reconstruction,” Proc. SPIE 3744, 65–74 (1999).
[CrossRef]

M. H. Jericho and H. Jürgen Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 3–30.

Jericho, S. K.

N. I. Lewis, W. B. Xu, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, “Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography,” Phycologia 45, 61–70 (2006).

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Juptner, W. P. O.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Jürgen Kreuzer, H.

M. H. Jericho and H. Jürgen Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 3–30.

Kakue, T.

Kanka, M.

Katz, J.

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. USA 107, 2082–2087 (2010).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104, 17512–17517 (2007).
[CrossRef]

Khmaladze, A.

Kim, M.

Klages, P.

Kreuzer, H. J.

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31, 1211–1213 (2006).
[CrossRef]

N. I. Lewis, W. B. Xu, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, “Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography,” Phycologia 45, 61–70 (2006).

W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, “Digital in-line holography with numerical reconstruction,” Proc. SPIE 3744, 65–74 (1999).
[CrossRef]

Kubota, T.

Kuhn, J.

Lewis, N. I.

N. I. Lewis, W. B. Xu, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, “Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography,” Phycologia 45, 61–70 (2006).

Lo, C. M.

Maier, T.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Malkiel, E.

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. USA 107, 2082–2087 (2010).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104, 17512–17517 (2007).
[CrossRef]

Mann, C.

Marian, A.

Marquet, P.

Matoba, O.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

Mittler, S.

R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010).
[CrossRef]

Montfort, F.

Nishio, K.

Osten, W.

Pedrini, G.

Pettitt, M.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

Piano, E.

Place, A. R.

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. USA 107, 2082–2087 (2010).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104, 17512–17517 (2007).
[CrossRef]

Pomerleau, N.

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, “Digital in-line holography with numerical reconstruction,” Proc. SPIE 3744, 65–74 (1999).
[CrossRef]

Pontiggia, C.

Repetto, L.

Riesenberg, R.

Rosenhahn, A.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010).
[CrossRef]

M. Heydt, P. Divos, M. Grunze, and A. Rosenhahn, “Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces,” Eur. Phys. J. E 30, 141–148 (2009).
[CrossRef]

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Schulz, S.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Seegert, C. E.

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

Sheng, J.

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. USA 107, 2082–2087 (2010).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104, 17512–17517 (2007).
[CrossRef]

Shimozato, Y.

Simpson, T.

R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010).
[CrossRef]

Spatz, J. P.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Staier, F.

R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010).
[CrossRef]

Tahara, T.

Ura, S.

Weisse, S.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Wilson, L.

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

Wuttig, A.

Xu, W.

Xu, W. B.

N. I. Lewis, W. B. Xu, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, “Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography,” Phycologia 45, 61–70 (2006).

Yamaguchi, I.

Yu, L.

Zhang, F.

Zhang, T.

Appl. Opt.

Biofouling

M. E. Callow, A. R. Jennings, A. B. Brennan, C. E. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney, and J. A. Callow, “Microtopographic cues for settlement of zoospores of the green fouling algae Enteromorpha,” Biofouling 18, 237–245 (2002).
[CrossRef]

Biomed. Opt. Express

Eur. Phys. J. E

M. Heydt, P. Divos, M. Grunze, and A. Rosenhahn, “Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces,” Eur. Phys. J. E 30, 141–148 (2009).
[CrossRef]

J. Adhes.

M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M. E. Callow, and J. A. Callow, “Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces,” J. Adhes. 83, 417–430 (2007).
[CrossRef]

J. Biotechnol.

R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, M. Grunze, and A. Rosenhahn, “Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes,” J. Biotechnol. 149, 238–242 (2010).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

Nature

D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[CrossRef]

Opt. Express

Opt. Lett.

Phycologia

N. I. Lewis, W. B. Xu, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, “Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography,” Phycologia 45, 61–70 (2006).

Phys. Chem. Chem. Phys.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104, 17512–17517 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. USA

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. USA 107, 2082–2087 (2010).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

Proc. SPIE

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, “Digital in-line holography with numerical reconstruction,” Proc. SPIE 3744, 65–74 (1999).
[CrossRef]

Other

M. H. Jericho and H. Jürgen Kreuzer, “Point source digital in-line holographic microscopy,” in Coherent Light Microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, 2011), pp. 3–30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the DIHM experiment through (a) a homogenous medium and alterations (dashed lines) introduced when a layer of different refractive index n1 is situated in (b) front or (c) behind the plane P to be reconstructed.

Fig. 2.
Fig. 2.

Equalized intensity images of the reconstructed holograms using (a, b) no correction, (c, d) the effective wavelength, and (e, f) the proposed corrections. The images show (a, c, e) the reconstruction of the horizontal and (b, d, f) the vertical line (upper and lower side of a glass slide).

Fig. 3.
Fig. 3.

(a) Reconstructed trajectory of a spore of the marine alga Ulva linza using no correction (green), the effective wavelength (red), and the proposed method (blue); and (b) their YZ projection. The corresponding histograms of velocities are shown in (c), (d), and (e) respectively.

Tables (5)

Tables Icon

Table 1. Comparison of Correction Methods for d=980μm

Tables Icon

Table 2. Comparison of Correction Methods for L=21.6mm

Tables Icon

Table 3. Effect of Changing the Refractive Index, Calibrated with d

Tables Icon

Table 4. Effect of Changing the Refractive Index for Constant L

Tables Icon

Table 5. Error Estimation in the Corners of the Image

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I(X,Y)=|ψ(X,Y)+φ(X,Y)|2=|ψ(X,Y)|2+|φ(X,Y)|2+ψ*(X,Y)φ(X,Y)+ψ(X,Y)φ*(X,Y).
K(r)=sI(ξ)exp(i2πλξ·r|ξ|)d2ξ,
Knm=Δ2exp[i2πλLX0(2x0+δn+mδ)]×j,j=0N1Ij,jexp{i2πλL[x0Δ(j+j)+δΔ(nj+mj)]}
Ij,j=I(X(X,Y),Y(X,Y))L4R4exp(i2πzRλL),
Xj=XjR/L,Yj=YjR/L=Y0+jΔ,R=(L2Xj2Yj2)1/2,
Xj=X0+jΔ,Yj=Y0+jΔ,xn=x0+nδ,ym=y0+mδ,
Δz=d(1tanβtanα)d(1n0n1),
n0r1+n0r2=n1r1+n0r2,
ΔL=d(n1n0cosαcosβ1)d(n1n01)
Q=aa=L+ΔLLd(1tanβtanα)L+ΔLLd(1n0n1),
Δzidi(1n0ni),
ΔLjdj(njn01),
QL+ΔLLjdj(1n0nj),
r=(Lidi)tanα+iditan[arcsin(n0nisinα)],

Metrics