Abstract

The effect of arc plasma ionization on its temperature diagnosis by the measurement of the refractive index is discussed. The refractive index of arc plasma in two conditions is compared: 1) only the first ionization is considered and 2) both the first and second ionizations are considered. In order to facilitate plasma temperature reconstruction, two corresponding refractive index models are deduced. For the sake of making this study universal, both the monatomic and dual-atomic molecule arc plasmas are chosen as typical examples for theoretical deduction and analysis. A condition, which can be adopted to estimate whether the second ionization should be considered in temperature reconstruction, is proposed. Finally, an argon arc plasma is chosen as an example for experiment, and the experimental results match well with the theoretical analysis. This study is crucial to arc plasma’s optical diagnosis, which is based on the measurement of the refractive index.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flames by moiré deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
    [CrossRef]
  2. J. Stricker and O. Kafri, “A new method for density gradient measurements in compressible flows,” AIAA J. 20, 820–823 (1982).
    [CrossRef]
  3. R. Snyder and L. Hesselink, “Measurement of mixing fluid flows with optical tomography,” Opt. Lett. 13, 87–89(1988).
    [CrossRef]
  4. A. J. Decker and S. H. Izen, “Three-dimensional computed tomography from interferometric measurements within a narrow cone of views,” Appl. Opt. 31, 7696–7706 (1992).
    [CrossRef]
  5. X. Wang, D. Wu, and G. Pang, “Use of moiré tomography to measure the temperature field of the flame of a pyrotechnical composition from its infrared radiation,” Combust. Explos. Shock Waves 37, 440–442 (2001).
  6. Y. Chen, S. Yang, A. He, and Z. Li, “Applicability of moiré deflection tomography for diagnosing arc plasmas,” Appl. Opt. 48, 489–496 (2009).
    [CrossRef]
  7. Y. Chen, S. Yang, Z. Li, and A. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
    [CrossRef]
  8. C. W. Allen, Astrophysical Quantities (Athlone Press, 1963) p. 92.
  9. B. Gross, B. Grycz, and K. Miklóssy, Plasma Technology (Iliffe Books, 1969).
  10. K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear refraction measurements of materials using the moiré deflectometry,” Opt. Commun. 234, 419–425 (2004).
    [CrossRef]

2011 (1)

Y. Chen, S. Yang, Z. Li, and A. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

2009 (1)

2004 (1)

K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear refraction measurements of materials using the moiré deflectometry,” Opt. Commun. 234, 419–425 (2004).
[CrossRef]

2001 (1)

X. Wang, D. Wu, and G. Pang, “Use of moiré tomography to measure the temperature field of the flame of a pyrotechnical composition from its infrared radiation,” Combust. Explos. Shock Waves 37, 440–442 (2001).

1992 (1)

1988 (1)

1982 (1)

J. Stricker and O. Kafri, “A new method for density gradient measurements in compressible flows,” AIAA J. 20, 820–823 (1982).
[CrossRef]

1981 (1)

Allen, C. W.

C. W. Allen, Astrophysical Quantities (Athlone Press, 1963) p. 92.

Bar-Ziv, E.

Chen, Y.

Y. Chen, S. Yang, Z. Li, and A. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y. Chen, S. Yang, A. He, and Z. Li, “Applicability of moiré deflection tomography for diagnosing arc plasmas,” Appl. Opt. 48, 489–496 (2009).
[CrossRef]

Decker, A. J.

Glatt, I.

Gross, B.

B. Gross, B. Grycz, and K. Miklóssy, Plasma Technology (Iliffe Books, 1969).

Grycz, B.

B. Gross, B. Grycz, and K. Miklóssy, Plasma Technology (Iliffe Books, 1969).

He, A.

Y. Chen, S. Yang, Z. Li, and A. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y. Chen, S. Yang, A. He, and Z. Li, “Applicability of moiré deflection tomography for diagnosing arc plasmas,” Appl. Opt. 48, 489–496 (2009).
[CrossRef]

Hesselink, L.

Izen, S. H.

Jamshidi-Ghaleh, K.

K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear refraction measurements of materials using the moiré deflectometry,” Opt. Commun. 234, 419–425 (2004).
[CrossRef]

Kafri, O.

J. Stricker and O. Kafri, “A new method for density gradient measurements in compressible flows,” AIAA J. 20, 820–823 (1982).
[CrossRef]

E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flames by moiré deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
[CrossRef]

Keren, E.

Li, Z.

Y. Chen, S. Yang, Z. Li, and A. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y. Chen, S. Yang, A. He, and Z. Li, “Applicability of moiré deflection tomography for diagnosing arc plasmas,” Appl. Opt. 48, 489–496 (2009).
[CrossRef]

Mansour, N.

K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear refraction measurements of materials using the moiré deflectometry,” Opt. Commun. 234, 419–425 (2004).
[CrossRef]

Miklóssy, K.

B. Gross, B. Grycz, and K. Miklóssy, Plasma Technology (Iliffe Books, 1969).

Pang, G.

X. Wang, D. Wu, and G. Pang, “Use of moiré tomography to measure the temperature field of the flame of a pyrotechnical composition from its infrared radiation,” Combust. Explos. Shock Waves 37, 440–442 (2001).

Snyder, R.

Stricker, J.

J. Stricker and O. Kafri, “A new method for density gradient measurements in compressible flows,” AIAA J. 20, 820–823 (1982).
[CrossRef]

Wang, X.

X. Wang, D. Wu, and G. Pang, “Use of moiré tomography to measure the temperature field of the flame of a pyrotechnical composition from its infrared radiation,” Combust. Explos. Shock Waves 37, 440–442 (2001).

Wu, D.

X. Wang, D. Wu, and G. Pang, “Use of moiré tomography to measure the temperature field of the flame of a pyrotechnical composition from its infrared radiation,” Combust. Explos. Shock Waves 37, 440–442 (2001).

Yang, S.

Y. Chen, S. Yang, Z. Li, and A. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y. Chen, S. Yang, A. He, and Z. Li, “Applicability of moiré deflection tomography for diagnosing arc plasmas,” Appl. Opt. 48, 489–496 (2009).
[CrossRef]

AIAA J. (1)

J. Stricker and O. Kafri, “A new method for density gradient measurements in compressible flows,” AIAA J. 20, 820–823 (1982).
[CrossRef]

Appl. Opt. (3)

Combust. Explos. Shock Waves (1)

X. Wang, D. Wu, and G. Pang, “Use of moiré tomography to measure the temperature field of the flame of a pyrotechnical composition from its infrared radiation,” Combust. Explos. Shock Waves 37, 440–442 (2001).

Opt. Commun. (2)

Y. Chen, S. Yang, Z. Li, and A. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear refraction measurements of materials using the moiré deflectometry,” Opt. Commun. 234, 419–425 (2004).
[CrossRef]

Opt. Lett. (1)

Other (2)

C. W. Allen, Astrophysical Quantities (Athlone Press, 1963) p. 92.

B. Gross, B. Grycz, and K. Miklóssy, Plasma Technology (Iliffe Books, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Refractive index difference of argon arc plasma (a) 532 nm, (b) 635 nm, and (c) 808 nm.

Fig. 2.
Fig. 2.

Refractive index difference of oxygen arc plasma (a) 532 nm, (b) 635 nm, and (c) 808 nm.

Fig. 3.
Fig. 3.

Refractive index difference varies with the temperature.

Fig. 4.
Fig. 4.

Refractive index difference varies with the second ionization degree.

Fig. 5.
Fig. 5.

Moiré fringes (a) argon arc plasma and (b) argon gas.

Fig. 6.
Fig. 6.

Refractive index distributions (a) argon arc plasma and (b) argon gas.

Fig. 7.
Fig. 7.

Radial temperature distribution of the cross section.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

nAr11=[1L(AAr+BArλ2)(10.33α1)4.46×1014λ2α1]P(1+α1)κT,
NO2=(1β)NO20,NO=2β(1α1)NO20,Ne=2βα1NO20,
P=[(1+β2βα1)NO20+2βα1NO20+2βα1NO20]κT=(1+β+2βα1)NO20κT.
NO20=P(1+β+2βα1)κT.
nO211=[1L(AO2+BO2λ2)(1β)8.92×1014λ2βα1]P(1+β+2βα1)κT.
Nn=(1α1)Nn0,Ni=α1Nn0,Ne=α1(1+α2)Nn0,
Nn0=P(1+α1+α1α2)κT.
nAr21=1L(AAr+BArλ2)((1α1)Nn0+0.67α1Nn0)4.46×1014λ2(α1+α1α2)Nn0=[1L(AAr+BArλ2)(10.33α1)4.46×1014λ2α1(1+α2)]P(1+α1+α1α2)κT.
nO221=[1L(AO2+BO2λ2)(1β)8.92×1014λ2βα1(1+α2)]P(1+β+2βα1(1+α2))κT,
ΔnAr=nAr2nAr1=[1L(AAr+BArλ2)(10.33α1)+4.46×1014λ2](α1α2(1+α1+α1α2)(1+α1))PκT.
ΔnO2=nO22nO21=[1L(AO2+BO2λ2)(1β)+4.46×1014λ2(1+β)](2βα1α2(1+β+2βα1(1+α2))(1+β+2βα2))PκT.
Δn=|n2n1|Δn0,

Metrics