Abstract

We present a numerical design procedure for an all-optical compact sensor by means of integrating the optofluidic switch polymer interferometers to measure the microfluidic air pressure and flow rate. The design is based on a flexible air gap optical cavity that can generate an interference pattern when illuminated by a monochromatic light. The optical interference pattern directly depends on the pressure. In our numerical simulations, we take the effects of fluid flow rate, solid deformation, and the light interference into account. We use the beam propagation method for simulating the optics and the finite element method for simulating the mechanics. The significance of the proposed sensor lies with its low power consumption, compactness, low cost, and short length. This sensor can operate under pressure range of 060±6%Pa at a constant temperature of 20 °C.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Urban, J. Kadlec, R. Vlach, and R. Kuchta, “Design of a pressure sensor based on optical fiber Bragg grating lateral deformation,” Sensors 10, 11212–11225 (2010).
    [CrossRef]
  2. J.-W. Choi, A. Pu, and D. Psaltis, “Optical detection of asymmetric bacteria utilizing electro orientation,” Opt. Express 14, 9780–9785 (2006).
    [CrossRef]
  3. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  4. P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry-Pérot polymer film interferometer,” Electron. Lett 33, 801–803 (1997).
    [CrossRef]
  5. H. Dooyoung, Y. Euisik, and H. Songcheol, “An optomechanical pressure sensor using multimode interface couplers,” J. Appl. Phys. 38, 2664–2668 (1999).
    [CrossRef]
  6. I. Mckenzie and N. Karafolas, “Fiber-optic sensing in space structures: the experience of the European Space Agency,” Proc. SPIE 5855, 262 (2005).
    [CrossRef]
  7. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
    [CrossRef]
  8. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid 4, 3–16 (2008).
    [CrossRef]
  9. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef]
  10. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
    [CrossRef]
  11. X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94, 241109 (2009).
    [CrossRef]
  12. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94, 051117 (2009).
    [CrossRef]
  13. C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
    [CrossRef]
  14. M. H. Bitrafan, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Proposal for post-fabrication fine-tuning of three-port photonic crystal channel drop filters by means of optofluidic infiltration,” Appl. Opt. 50, 2622–2627 (2011).
    [CrossRef]
  15. S. Bakhshi, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration,” Appl. Opt. 50, 4048–4053 (2011).
    [CrossRef]
  16. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1×4 switch,” Opt. Express 16, 13499–13508 (2008).
    [CrossRef]
  17. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
    [CrossRef]
  18. C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. USA 102, 14960–14963 (2005).
    [CrossRef]
  19. D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7, 1791–1799 (2007).
    [CrossRef]
  20. S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A 136, 69–79 (2007).
    [CrossRef]
  21. M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76, 895–899 (2004).
    [CrossRef]
  22. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116(2000).
    [CrossRef]
  23. W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96, 081101 (2010).
    [CrossRef]
  24. W. Song and D. Psaltis, “Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography,” Opt. Express 18, 16561–16566 (2010).
  25. W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604–3606 (2010).
  26. R. W. Fox, A. T. McDonald, and P. J. Pritchard, Introduction to Fluid Mechanics, 6th ed. (Wiley, 2004).
  27. S. Timoshenko, Theory of Elasticity, 2nd ed. (McGraw-Hill, 1951).
  28. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation (Wiley, 2001).
  29. R. Sonntag, C. Borgnakke, and G. Van Wylen, Fundamentals of Thermodynamics, 6th ed. (Wiley, 2003).
  30. J. N. Reddy, An Introduction to the Finite Element Method, 2nd ed. (McGraw-Hill, 1993).

2011 (2)

2010 (4)

F. Urban, J. Kadlec, R. Vlach, and R. Kuchta, “Design of a pressure sensor based on optical fiber Bragg grating lateral deformation,” Sensors 10, 11212–11225 (2010).
[CrossRef]

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

W. Song and D. Psaltis, “Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography,” Opt. Express 18, 16561–16566 (2010).

W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604–3606 (2010).

2009 (4)

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94, 241109 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

2008 (2)

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1×4 switch,” Opt. Express 16, 13499–13508 (2008).
[CrossRef]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid 4, 3–16 (2008).
[CrossRef]

2007 (4)

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
[CrossRef]

D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7, 1791–1799 (2007).
[CrossRef]

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A 136, 69–79 (2007).
[CrossRef]

2006 (3)

2005 (2)

I. Mckenzie and N. Karafolas, “Fiber-optic sensing in space structures: the experience of the European Space Agency,” Proc. SPIE 5855, 262 (2005).
[CrossRef]

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. USA 102, 14960–14963 (2005).
[CrossRef]

2004 (1)

M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76, 895–899 (2004).
[CrossRef]

2000 (1)

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116(2000).
[CrossRef]

1999 (1)

H. Dooyoung, Y. Euisik, and H. Songcheol, “An optomechanical pressure sensor using multimode interface couplers,” J. Appl. Phys. 38, 2664–2668 (1999).
[CrossRef]

1997 (1)

P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry-Pérot polymer film interferometer,” Electron. Lett 33, 801–803 (1997).
[CrossRef]

Bakhshi, S.

Beard, P. C.

P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry-Pérot polymer film interferometer,” Electron. Lett 33, 801–803 (1997).
[CrossRef]

Bitrafan, M. H.

Borgnakke, C.

R. Sonntag, C. Borgnakke, and G. Van Wylen, Fundamentals of Thermodynamics, 6th ed. (Wiley, 2003).

Burns, M. A.

D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7, 1791–1799 (2007).
[CrossRef]

Cadou, C. P.

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A 136, 69–79 (2007).
[CrossRef]

Campbell, K.

Chang, D. S.

D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7, 1791–1799 (2007).
[CrossRef]

Choi, J.-W.

Chou, H. P.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116(2000).
[CrossRef]

Day, J. C.

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A 136, 69–79 (2007).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
[CrossRef]

Dooyoung, H.

H. Dooyoung, Y. Euisik, and H. Songcheol, “An optomechanical pressure sensor using multimode interface couplers,” J. Appl. Phys. 38, 2664–2668 (1999).
[CrossRef]

Ebnali-Heidari, M.

Eggleton, B. J.

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
[CrossRef]

Euisik, Y.

H. Dooyoung, Y. Euisik, and H. Songcheol, “An optomechanical pressure sensor using multimode interface couplers,” J. Appl. Phys. 38, 2664–2668 (1999).
[CrossRef]

Fainman, Y.

Fan, X.

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94, 241109 (2009).
[CrossRef]

Fox, R. W.

R. W. Fox, A. T. McDonald, and P. J. Pritchard, Introduction to Fluid Mechanics, 6th ed. (Wiley, 2004).

Ghodssi, R.

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A 136, 69–79 (2007).
[CrossRef]

Graham, A.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Granwehr, J.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. USA 102, 14960–14963 (2005).
[CrossRef]

Grillet, C.

Groisman, A.

Han, S. I.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. USA 102, 14960–14963 (2005).
[CrossRef]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid 4, 3–16 (2008).
[CrossRef]

Hilty, C.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. USA 102, 14960–14963 (2005).
[CrossRef]

Huang, T. J.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[CrossRef]

Juluri, B. K.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[CrossRef]

Kadlec, J.

F. Urban, J. Kadlec, R. Vlach, and R. Kuchta, “Design of a pressure sensor based on optical fiber Bragg grating lateral deformation,” Sensors 10, 11212–11225 (2010).
[CrossRef]

Karafolas, N.

I. Mckenzie and N. Karafolas, “Fiber-optic sensing in space structures: the experience of the European Space Agency,” Proc. SPIE 5855, 262 (2005).
[CrossRef]

Karnutsch, C.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Kawano, K.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation (Wiley, 2001).

Kitoh, T.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation (Wiley, 2001).

Krauss, T. F.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Kuchta, R.

F. Urban, J. Kadlec, R. Vlach, and R. Kuchta, “Design of a pressure sensor based on optical fiber Bragg grating lateral deformation,” Sensors 10, 11212–11225 (2010).
[CrossRef]

Langelier, S. M.

D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7, 1791–1799 (2007).
[CrossRef]

Levy, U.

Li, S.

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A 136, 69–79 (2007).
[CrossRef]

Li, Z.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

Mao, X.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[CrossRef]

McDonald, A. T.

R. W. Fox, A. T. McDonald, and P. J. Pritchard, Introduction to Fluid Mechanics, 6th ed. (Wiley, 2004).

McDonnell, E. E.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. USA 102, 14960–14963 (2005).
[CrossRef]

Mckenzie, I.

I. Mckenzie and N. Karafolas, “Fiber-optic sensing in space structures: the experience of the European Space Agency,” Proc. SPIE 5855, 262 (2005).
[CrossRef]

McPhedran, R.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Mills, T. N.

P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry-Pérot polymer film interferometer,” Electron. Lett 33, 801–803 (1997).
[CrossRef]

Monat, C.

Moravvej-Farshi, M. K.

Mortensen, N. A.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

O’Faolain, L.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Pang, L.

Park, J. J.

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A 136, 69–79 (2007).
[CrossRef]

Pierce, K. L.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. USA 102, 14960–14963 (2005).
[CrossRef]

Pines, A.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. USA 102, 14960–14963 (2005).
[CrossRef]

Pritchard, P. J.

R. W. Fox, A. T. McDonald, and P. J. Pritchard, Introduction to Fluid Mechanics, 6th ed. (Wiley, 2004).

Psaltis, D.

W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604–3606 (2010).

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

W. Song and D. Psaltis, “Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography,” Opt. Express 18, 16561–16566 (2010).

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

J.-W. Choi, A. Pu, and D. Psaltis, “Optical detection of asymmetric bacteria utilizing electro orientation,” Opt. Express 14, 9780–9785 (2006).
[CrossRef]

Pu, A.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116(2000).
[CrossRef]

Reddy, J. N.

J. N. Reddy, An Introduction to the Finite Element Method, 2nd ed. (McGraw-Hill, 1993).

Russell, P. St. J.

Scherer, A.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116(2000).
[CrossRef]

Schmidt, H.

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid 4, 3–16 (2008).
[CrossRef]

Seki, M.

M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76, 895–899 (2004).
[CrossRef]

Smith, C. C.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Song, W.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604–3606 (2010).

W. Song and D. Psaltis, “Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography,” Opt. Express 18, 16561–16566 (2010).

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

Songcheol, H.

H. Dooyoung, Y. Euisik, and H. Songcheol, “An optomechanical pressure sensor using multimode interface couplers,” J. Appl. Phys. 38, 2664–2668 (1999).
[CrossRef]

Sonntag, R.

R. Sonntag, C. Borgnakke, and G. Van Wylen, Fundamentals of Thermodynamics, 6th ed. (Wiley, 2003).

Sun, Y.

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94, 241109 (2009).
[CrossRef]

Suter, J. D.

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94, 241109 (2009).
[CrossRef]

Thorsen, T.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116(2000).
[CrossRef]

Timoshenko, S.

S. Timoshenko, Theory of Elasticity, 2nd ed. (McGraw-Hill, 1951).

Tomljenovic-Hanic, S.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Unger, M. A.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116(2000).
[CrossRef]

Urban, F.

F. Urban, J. Kadlec, R. Vlach, and R. Kuchta, “Design of a pressure sensor based on optical fiber Bragg grating lateral deformation,” Sensors 10, 11212–11225 (2010).
[CrossRef]

Van Wylen, G.

R. Sonntag, C. Borgnakke, and G. Van Wylen, Fundamentals of Thermodynamics, 6th ed. (Wiley, 2003).

Vasdekis, A. E.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

Vlach, R.

F. Urban, J. Kadlec, R. Vlach, and R. Kuchta, “Design of a pressure sensor based on optical fiber Bragg grating lateral deformation,” Sensors 10, 11212–11225 (2010).
[CrossRef]

Waldeisen, J. R.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[CrossRef]

Wu, X.

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94, 241109 (2009).
[CrossRef]

Xiao, S.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

Yamada, M.

M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76, 895–899 (2004).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Zamek, S.

Anal. Chem. (1)

M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76, 895–899 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94, 241109 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009).
[CrossRef]

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

Electron. Lett (1)

P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry-Pérot polymer film interferometer,” Electron. Lett 33, 801–803 (1997).
[CrossRef]

J. Appl. Phys. (1)

H. Dooyoung, Y. Euisik, and H. Songcheol, “An optomechanical pressure sensor using multimode interface couplers,” J. Appl. Phys. 38, 2664–2668 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Lab Chip (2)

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[CrossRef]

D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7, 1791–1799 (2007).
[CrossRef]

Microfluid. Nanofluid (1)

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid 4, 3–16 (2008).
[CrossRef]

Nat. Photon. (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. USA 102, 14960–14963 (2005).
[CrossRef]

Proc. SPIE (1)

I. Mckenzie and N. Karafolas, “Fiber-optic sensing in space structures: the experience of the European Space Agency,” Proc. SPIE 5855, 262 (2005).
[CrossRef]

Science (1)

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116(2000).
[CrossRef]

Sens. Actuators A (1)

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A 136, 69–79 (2007).
[CrossRef]

Sensors (1)

F. Urban, J. Kadlec, R. Vlach, and R. Kuchta, “Design of a pressure sensor based on optical fiber Bragg grating lateral deformation,” Sensors 10, 11212–11225 (2010).
[CrossRef]

Other (5)

R. W. Fox, A. T. McDonald, and P. J. Pritchard, Introduction to Fluid Mechanics, 6th ed. (Wiley, 2004).

S. Timoshenko, Theory of Elasticity, 2nd ed. (McGraw-Hill, 1951).

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation (Wiley, 2001).

R. Sonntag, C. Borgnakke, and G. Van Wylen, Fundamentals of Thermodynamics, 6th ed. (Wiley, 2003).

J. N. Reddy, An Introduction to the Finite Element Method, 2nd ed. (McGraw-Hill, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

2D cross-sectional view of (a) typical optofluidic pressure sensor, and deformed polymer on top of an optical cavity with (b) flat inner surface sensing an atmospheric pressure (uncompressed fluid) and (c) curved inner surface sensing compressed fluid under 60 Pa.

Fig. 2.
Fig. 2.

(a) Distribution of surface pressure across the sensor injected by an uncompressed air with normal inflow rate of 0.5m/s; (b) distribution of surface pressure across the sensor injected by an uncompressed air for various inflow velocities of 0.2, 0.4, 0.6, 0.8, and 1m/s. The color bar illustrates the refractive index value.

Fig. 3.
Fig. 3.

Relative pressure by performing the numerical simulation for the material presented in Table 1 with velocity of 0.5m/s.

Fig. 4.
Fig. 4.

Pressure of (a) cavity 1, (b) cavity 2, and (c) pressure difference between the cavities 1 and 2 versus the inlet velocity for different materials (velocity range of 01m/s).

Fig. 5.
Fig. 5.

(a) Surface color of the pressure the for 2D cavity in the cylindrical coordination with the velocity of 0.2m/s; (b) curvature deformation of the cavity for pressure range of 0–60 Pa; (c) pressure dependence to the maximum displacement of the PDMS.

Fig. 6.
Fig. 6.

Schematic of light illumination to the sensor structure (the light has been passed through a multilayer structure and focusing by lens).

Fig. 7.
Fig. 7.

Dependence on normalized light intensity versus wavelength for the radiation angle of θ=10°.

Fig. 8.
Fig. 8.

The optical patterns due to the PDMS deformation. (a) P=10Pa; (b) P=20Pa; (c) P=30Pa; (d) P=40Pa; (e) P=50Pa; (f) P=60Pa. The dependency of the curvature of the PDMS to the pressure studied in the mechanical section, as shown in the Fig. 5(b).

Tables (1)

Tables Icon

Table 1. Properties of Fluids Used in Simulations under an Atmospheric Pressure at T=20°C

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

.(ρV)=0,ρ(Vt+(V.)V)=P+μ(2V)+Fext,
σxx+σyxy+σzxz=Fx,
σxyx+σyy+σzyz=Fy,
σxzx+σyzy+σzz=Fz,
σij=σji(ij).
εij=12(2uxuy+vxuz+wxuy+vx2vyvz+wyuz+wxvz+wy2wz)=(εxεxyεxzεyxεyεyzεzxεzyεz),
2εxy2+2εyx2=22εxyyx,
2εyz2+2εzy2=22εyzyz,
2εzx2+2εxz2=22εxzxz.
εx=1E[σxυ(σy+σz)]+αT,
εy=1E[σyυ(σx+σz)]+αT,
εz=1E[σzυ(σx+σy)]+αT,
εxy=1+υEσxy,
εyz=1+υEσyz,
εzx=1+υEσzx,
Δ=2dcos(θ)*n,
I=4a2[cos(πΔ/λ)]2.
dmdt=ρVA,
ΔP=PcPi=ρ2(V2Vc2)ρghl=ρV22(Ai2Ac21)ρghl,
ΔP=f(D,ρ,μ,V).
ΔP12ρV2=g(ρVDμ)CP=g(Re),
ΔP=C·(μVρ),

Metrics