Abstract

Formation of anisotropy and polarization holographic gratings (ss, pp, and sp) in Ag/TiO2 nanocomposite films were investigated using Nd:YAG lasers (532 nm) as pumping and writing source, respectively. The observations can be well explained by the anisotropic photodissolution of Ag nanoparticles, the photomobility and reduction of Ag+ ions, and the light scattering induced by Ag nanoparticles. Taking these effects into account, a phenomenological model based on simultaneous formation of the absorption grating and the two coupling phase gratings is proposed and found to be in good agreement with the measurements. The main differences in the three polarization grating formation processes are also discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization diffraction grating,” Opt. Acta 31, 579–588 (1984).
    [CrossRef]
  2. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).
  3. F. Kahmann, J. Höhne, R. Pankrath, and R. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B 50, 2474–2478(1994).
    [CrossRef]
  4. W. Su, C. Huang, and J. Chen, “Effect of recording-beam ratio on diffraction efficiency of polarization holographic gratings in dye-doped liquid-crystal films,” Opt. Lett. 35, 405–407 (2010).
    [CrossRef]
  5. G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B 114, 8900–8904 (2010).
    [CrossRef]
  6. S. Fu, Y. Liu, Z. Lu, L. Dong, W. Hu, and M. Xie, “Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light,” Opt. Commun. 242, 115–122 (2004).
    [CrossRef]
  7. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  8. K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  9. J. J. Mock, M. Barbic, and D. R. Smith, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
    [CrossRef]
  10. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
    [CrossRef]
  11. S. Panigrahi, S. Praharaj, and S. Basu, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110, 13436–13444 (2006).
    [CrossRef]
  12. K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126, 3664–3668 (2004).
    [CrossRef]
  13. K. Matsubara, and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19, 2802–2806 (2007).
    [CrossRef]
  14. O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. 14, 1000–1004 (2002).
    [CrossRef]
  15. K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125, 588–593 (2003).
    [CrossRef]
  16. J. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (1999).
    [CrossRef]
  17. Q. Qiao, X. Zhang, Z. Lu, L. Wang, and Y. Liu, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94, 074104 (2009).
    [CrossRef]
  18. R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size- dependent photochromism-based holographic storage properties of Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 98, 221905 (2011).
    [CrossRef]
  19. A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
    [CrossRef]
  20. Y. Tian, and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
    [CrossRef]
  21. K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys 7, 3851–3855 (2005).
    [CrossRef]
  22. J. Wu, F. Chen, and Y. Hsiao, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
    [CrossRef]
  23. A. Sobolewska, and S. Bartkiewicz, “On the long time holographic grating recording process in azo-polymer,” Appl. Phys. Lett. 95, 123302 (2009).
    [CrossRef]
  24. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  25. T. K. Gaylord, and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
    [CrossRef]

2011 (2)

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size- dependent photochromism-based holographic storage properties of Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 98, 221905 (2011).
[CrossRef]

J. Wu, F. Chen, and Y. Hsiao, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

2010 (2)

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B 114, 8900–8904 (2010).
[CrossRef]

W. Su, C. Huang, and J. Chen, “Effect of recording-beam ratio on diffraction efficiency of polarization holographic gratings in dye-doped liquid-crystal films,” Opt. Lett. 35, 405–407 (2010).
[CrossRef]

2009 (2)

Q. Qiao, X. Zhang, Z. Lu, L. Wang, and Y. Liu, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94, 074104 (2009).
[CrossRef]

A. Sobolewska, and S. Bartkiewicz, “On the long time holographic grating recording process in azo-polymer,” Appl. Phys. Lett. 95, 123302 (2009).
[CrossRef]

2007 (1)

K. Matsubara, and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19, 2802–2806 (2007).
[CrossRef]

2006 (2)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

S. Panigrahi, S. Praharaj, and S. Basu, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110, 13436–13444 (2006).
[CrossRef]

2005 (2)

Y. Tian, and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef]

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys 7, 3851–3855 (2005).
[CrossRef]

2004 (2)

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126, 3664–3668 (2004).
[CrossRef]

S. Fu, Y. Liu, Z. Lu, L. Dong, W. Hu, and M. Xie, “Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light,” Opt. Commun. 242, 115–122 (2004).
[CrossRef]

2003 (2)

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125, 588–593 (2003).
[CrossRef]

2002 (2)

J. J. Mock, M. Barbic, and D. R. Smith, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. 14, 1000–1004 (2002).
[CrossRef]

2001 (1)

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
[CrossRef]

1999 (1)

J. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (1999).
[CrossRef]

1994 (1)

F. Kahmann, J. Höhne, R. Pankrath, and R. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B 50, 2474–2478(1994).
[CrossRef]

1985 (1)

T. K. Gaylord, and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

1984 (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization diffraction grating,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Barbic, M.

J. J. Mock, M. Barbic, and D. R. Smith, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Bartkiewicz, S.

A. Sobolewska, and S. Bartkiewicz, “On the long time holographic grating recording process in azo-polymer,” Appl. Phys. Lett. 95, 123302 (2009).
[CrossRef]

Basu, S.

S. Panigrahi, S. Praharaj, and S. Basu, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110, 13436–13444 (2006).
[CrossRef]

Chen, F.

J. Wu, F. Chen, and Y. Hsiao, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Chen, J.

Cipparrone, G.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B 114, 8900–8904 (2010).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Dai, R.

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size- dependent photochromism-based holographic storage properties of Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 98, 221905 (2011).
[CrossRef]

Dong, L.

S. Fu, Y. Liu, Z. Lu, L. Dong, W. Hu, and M. Xie, “Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light,” Opt. Commun. 242, 115–122 (2004).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

Fu, S.

S. Fu, Y. Liu, Z. Lu, L. Dong, W. Hu, and M. Xie, “Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light,” Opt. Commun. 242, 115–122 (2004).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord, and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Glucksberg, M. R.

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125, 588–593 (2003).
[CrossRef]

Han, R.

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size- dependent photochromism-based holographic storage properties of Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 98, 221905 (2011).
[CrossRef]

Haynes, C. L.

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125, 588–593 (2003).
[CrossRef]

Hilger, A.

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
[CrossRef]

Höhne, J.

F. Kahmann, J. Höhne, R. Pankrath, and R. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B 50, 2474–2478(1994).
[CrossRef]

Hsiao, Y.

J. Wu, F. Chen, and Y. Hsiao, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Hu, W.

S. Fu, Y. Liu, Z. Lu, L. Dong, W. Hu, and M. Xie, “Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light,” Opt. Commun. 242, 115–122 (2004).
[CrossRef]

Huang, C.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

Kahmann, F.

F. Kahmann, J. Höhne, R. Pankrath, and R. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B 50, 2474–2478(1994).
[CrossRef]

Kawahara, K.

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys 7, 3851–3855 (2005).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kreibig, U.

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

Liu, Y.

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size- dependent photochromism-based holographic storage properties of Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 98, 221905 (2011).
[CrossRef]

Q. Qiao, X. Zhang, Z. Lu, L. Wang, and Y. Liu, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94, 074104 (2009).
[CrossRef]

S. Fu, Y. Liu, Z. Lu, L. Dong, W. Hu, and M. Xie, “Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light,” Opt. Commun. 242, 115–122 (2004).
[CrossRef]

Lu, Z.

Q. Qiao, X. Zhang, Z. Lu, L. Wang, and Y. Liu, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94, 074104 (2009).
[CrossRef]

S. Fu, Y. Liu, Z. Lu, L. Dong, W. Hu, and M. Xie, “Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light,” Opt. Commun. 242, 115–122 (2004).
[CrossRef]

Matsubara, K.

K. Matsubara, and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19, 2802–2806 (2007).
[CrossRef]

Mock, J. J.

J. J. Mock, M. Barbic, and D. R. Smith, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Moharam, M. G.

T. K. Gaylord, and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Mulvaney, P.

O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. 14, 1000–1004 (2002).
[CrossRef]

Naoi, K.

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126, 3664–3668 (2004).
[CrossRef]

Nikolova, L.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization diffraction grating,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Ohko, Y.

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys 7, 3851–3855 (2005).
[CrossRef]

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126, 3664–3668 (2004).
[CrossRef]

Pagliusi, P.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B 114, 8900–8904 (2010).
[CrossRef]

Panigrahi, S.

S. Panigrahi, S. Praharaj, and S. Basu, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110, 13436–13444 (2006).
[CrossRef]

Pankrath, R.

F. Kahmann, J. Höhne, R. Pankrath, and R. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B 50, 2474–2478(1994).
[CrossRef]

Pendry, J.

J. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (1999).
[CrossRef]

Praharaj, S.

S. Panigrahi, S. Praharaj, and S. Basu, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110, 13436–13444 (2006).
[CrossRef]

Provenzano, C.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B 114, 8900–8904 (2010).
[CrossRef]

Qiao, Q.

Q. Qiao, X. Zhang, Z. Lu, L. Wang, and Y. Liu, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94, 074104 (2009).
[CrossRef]

Ramanujam, P. S.

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Rupp, R.

F. Kahmann, J. Höhne, R. Pankrath, and R. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B 50, 2474–2478(1994).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Shafer-Peltier, K. E.

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125, 588–593 (2003).
[CrossRef]

Shibaev, V. P.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B 114, 8900–8904 (2010).
[CrossRef]

Smith, D. R.

J. J. Mock, M. Barbic, and D. R. Smith, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Sobolewska, A.

A. Sobolewska, and S. Bartkiewicz, “On the long time holographic grating recording process in azo-polymer,” Appl. Phys. Lett. 95, 123302 (2009).
[CrossRef]

Su, W.

Suzuki, K.

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys 7, 3851–3855 (2005).
[CrossRef]

Tatsuma, T.

K. Matsubara, and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19, 2802–2806 (2007).
[CrossRef]

Y. Tian, and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef]

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys 7, 3851–3855 (2005).
[CrossRef]

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126, 3664–3668 (2004).
[CrossRef]

Tenfelde, M.

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
[CrossRef]

Tian, Y.

Y. Tian, and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef]

Todorov, T.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization diffraction grating,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

Van Duyne, R. P.

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125, 588–593 (2003).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Wang, L.

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size- dependent photochromism-based holographic storage properties of Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 98, 221905 (2011).
[CrossRef]

Q. Qiao, X. Zhang, Z. Lu, L. Wang, and Y. Liu, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94, 074104 (2009).
[CrossRef]

Wilson, G. J.

O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. 14, 1000–1004 (2002).
[CrossRef]

Wilson, O.

O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. 14, 1000–1004 (2002).
[CrossRef]

Wu, J.

J. Wu, F. Chen, and Y. Hsiao, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Xie, M.

S. Fu, Y. Liu, Z. Lu, L. Dong, W. Hu, and M. Xie, “Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light,” Opt. Commun. 242, 115–122 (2004).
[CrossRef]

Zhang, X.

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size- dependent photochromism-based holographic storage properties of Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 98, 221905 (2011).
[CrossRef]

Q. Qiao, X. Zhang, Z. Lu, L. Wang, and Y. Liu, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94, 074104 (2009).
[CrossRef]

Zhao, L.

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

ACS Nano (1)

J. Wu, F. Chen, and Y. Hsiao, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Adv. Mater. (2)

K. Matsubara, and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19, 2802–2806 (2007).
[CrossRef]

O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. 14, 1000–1004 (2002).
[CrossRef]

Appl. Phys. B (1)

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

A. Sobolewska, and S. Bartkiewicz, “On the long time holographic grating recording process in azo-polymer,” Appl. Phys. Lett. 95, 123302 (2009).
[CrossRef]

Q. Qiao, X. Zhang, Z. Lu, L. Wang, and Y. Liu, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94, 074104 (2009).
[CrossRef]

R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, “Size- dependent photochromism-based holographic storage properties of Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 98, 221905 (2011).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Am. Chem. Soc. (3)

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126, 3664–3668 (2004).
[CrossRef]

K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125, 588–593 (2003).
[CrossRef]

Y. Tian, and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, and D. R. Smith, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

J. Phys. Chem. B (4)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef]

S. Panigrahi, S. Praharaj, and S. Basu, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110, 13436–13444 (2006).
[CrossRef]

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence,” J. Phys. Chem. B 114, 8900–8904 (2010).
[CrossRef]

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Opt. Acta (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization diffraction grating,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

Opt. Commun. (1)

S. Fu, Y. Liu, Z. Lu, L. Dong, W. Hu, and M. Xie, “Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light,” Opt. Commun. 242, 115–122 (2004).
[CrossRef]

Opt. Lett. (1)

Phys. Chem. Chem. Phys (1)

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys 7, 3851–3855 (2005).
[CrossRef]

Phys. Rev. B (1)

F. Kahmann, J. Höhne, R. Pankrath, and R. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. B 50, 2474–2478(1994).
[CrossRef]

Proc. IEEE (1)

T. K. Gaylord, and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Science (1)

J. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (1999).
[CrossRef]

Other (2)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental configuration for (a) photoinduced birefringence and (b) holographic grating recording in Ag/TiO2 nanocomposite films. M, mirror; BS, beam splitter; P, polarizer; RP, retardation plate (λ/2 or λ/4).

Fig. 2.
Fig. 2.

(a) UV—Vis absorption spectra of the Ag/TiO2 film. (b), (c) Differential absorption spectra of the Ag/TiO2 film irradiated with circularly and linearly polarized green light, respectively, from a Nd:YAG laser (532 nm, 0.5 mW) for different periods.

Fig. 3.
Fig. 3.

Photoinduced birefringence versus exposure time with linearly (circles) and circularly (squares) polarized pumping light (532 nm) at 8 mW.

Fig. 4.
Fig. 4.

Sketch of anisotropic photodissolution. The horizontal axis represents the light wave’s propagation direction. The wavy line represents the electricity vector vibration of the light wave.

Fig. 5.
Fig. 5.

First-order diffraction efficiencies of the holographic gratings versus time for ss, pp, and sp polarization configurations.

Fig. 6.
Fig. 6.

Sketch of photomobility and photoreduction of Ag+ ions.

Tables (2)

Tables Icon

Table 1. Periodic Polarization Modulation of the Light Used for Grating Recording for Different Polarization Geometries

Tables Icon

Table 2. Kinetics Parameters Obtained by Fitting to Photoinduced Birefringence and Polarization Holographic Experiments

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δn=λπdarcsin(T),
η(t)=ηp(t)exp(Rpt)+ηa(t)exp(Rat),
η(t)=J12(Γ(t))exp(Rpt)+sin2Γα(t)exp(Rat),
Γ(t)=[ΓAPG2(t)+ΓMDG2(t)+2ΓAPG(t)ΓMDG(t)cosπ]1/2,
ΓAPG(t)=(2πd/λ){Δn1,max[1exp(R1t)]+Δn2,max[1exp(R2t)]},
ΓMDG(t)=(2πd/λ)Δn3,max[1exp(R3t)],
Γα(t)=Δαmaxd[1exp(R4t)]/2,
η(t)=J12((2πd/λ){Δn1,max[1exp(R1t)]+Δn2,max[1exp(R2t)]+Δn3,max[1exp(R3t)]})exp(Rat)+sin2{Δαmaxd[1exp(R4t)]/2}exp(Rat).

Metrics