Abstract

We report a novel tilting exposure photolithography (TEL) technique where gradual pattern displacement is employed to achieve high-resolution features over large areas with reasonable exposure times. A linear array with features of the order of 100 nm has been realized using this technique with standard blue-light LED sources. TEL can be useful in the visible and ultraviolet spectra to create two-dimensional periodic structures. The created structures include the nanometric array of spots and lines. The proposed technique can be used as a writing method where complex features can be generated by moving the sample-holding leading to serpentine nanometric linear arrays.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Lucas, S. Postnikov, C. Henderson, and S. Hector, “Lithography: Concepts, Challenges and Prospects,” in Nano and Giga Challenges in MicroelectronicsJ. Greer, A. Korkin, and J. Labanowski, eds (Elsevier, 2003).
  2. K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
    [CrossRef]
  3. E. Sarantopoulou, A. C. Cefalas, P. Argitis, and E. Gogolides, “Photoresist materials for 157 nm photolithography,” Mater. Sci. Eng. C, 15, 159–161 (2001).
    [CrossRef]
  4. G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38 (1965).
  5. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
    [CrossRef]
  6. A. Fernandez and D. W. Phillion, “Effects of phase shifts on four-beam interference patterns,” Appl. Opt. 37, 473–478 (1998).
    [CrossRef]
  7. T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, “Multiple electron-beam lithography,” Microelectron. Eng. 57–58, 117–135 (2001).
    [CrossRef]
  8. M. Chaker, S. Boily, B. Lafontaine, J. C. Kieffer, and H. Pepin, “X-ray wavelength optimization of the laser plasma X-ray lithography source,” Microelectron. Eng. 10, 91–105 (1990).
    [CrossRef]
  9. L. A. Hackel, R. J. Beach, C. B. Dane, and L. E. Zapata, “Laser driver for soft-x-ray projection lithography,” Appl. Opt. 32, 6914–6919 (1993).
    [CrossRef]
  10. A. Ulmann, An Introduction to Ultrathin Organic Films(Academic, 1991).
  11. B. Pignataro, L. Sardone, and G. Marletta, “From micro to nanometric scale patterning by Langmuir—Blodgett technique,” Mater. Sci. Eng. C 22, 177–181 (2002).
    [CrossRef]
  12. L. K. White, “Contact hole imaging characteristics from projection lithography,” Appl. Opt. 26, 2334–2341 (1987).
    [CrossRef]
  13. K. Ronse, “Optical lithography: a historical perspective,” C. R. Phys. 7, 844–857 (2006).
    [CrossRef]
  14. B. J. Lin, “Optical lithography—present and future challenges,” C. R. Phys. 7, 858–874 (2006).
    [CrossRef]
  15. M. van den Brink, H. Jasper, S. D. Slonaker, P. Wijnhoven, and F. Klaassen, “Step-and-scan and step-and-repeat: a technology comparison,” Proc. SPIE 2726, 734–753 (1996).
    [CrossRef]
  16. H. L. Chen, W. Fan, T.-J. Wang, F.-H. Ko, R.-S. Zhai, C.-K. Hsu, and T.-J. Chuang, “Optical-gradient antireflective coatings for 157 nm optical lithography applications,” Appl. Opt. 43, 2141–2145 (2004).
  17. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
    [CrossRef]
  18. C. A. Mack, “Seeing double,” IEEE Spectrum 45, 46–51 (2008).
    [CrossRef]
  19. R. S. Ghaida, G. Torres, and P. Gupta, “Single-mask double-patterning lithography,” Proc. SPIE 7488, 1–11(2009).
    [CrossRef]
  20. M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuat. A 111, 14–20 (2004).
    [CrossRef]
  21. J. W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation,” Lab Chip 10, 783–788 (2010).
    [CrossRef]
  22. M. Qi and H. I. Smith, “Achieving nanometer-scale, controllable pattern shifts in x-ray lithography using an assembly-tilting technique,” J. Vac. Sci. Technol. B 202991–2994 (2002).
    [CrossRef]
  23. Y. Komijani, N. Izadi, B. Khadem-Hosseinieh, and S. Mohajerzadeh “Ultraviolet assisted 3-D microstructures on PET,” IEEE Sens. J. 6, 851–853 (2006).
    [CrossRef]
  24. S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008).
    [CrossRef]
  25. A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996).
    [CrossRef]
  26. C. A. Mack, “The optical behavior of pellicles,” Microlithogr. World 16, 10–11 (2007).

2010 (1)

J. W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation,” Lab Chip 10, 783–788 (2010).
[CrossRef]

2009 (1)

R. S. Ghaida, G. Torres, and P. Gupta, “Single-mask double-patterning lithography,” Proc. SPIE 7488, 1–11(2009).
[CrossRef]

2008 (2)

C. A. Mack, “Seeing double,” IEEE Spectrum 45, 46–51 (2008).
[CrossRef]

S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008).
[CrossRef]

2007 (1)

C. A. Mack, “The optical behavior of pellicles,” Microlithogr. World 16, 10–11 (2007).

2006 (3)

Y. Komijani, N. Izadi, B. Khadem-Hosseinieh, and S. Mohajerzadeh “Ultraviolet assisted 3-D microstructures on PET,” IEEE Sens. J. 6, 851–853 (2006).
[CrossRef]

K. Ronse, “Optical lithography: a historical perspective,” C. R. Phys. 7, 844–857 (2006).
[CrossRef]

B. J. Lin, “Optical lithography—present and future challenges,” C. R. Phys. 7, 858–874 (2006).
[CrossRef]

2004 (3)

H. L. Chen, W. Fan, T.-J. Wang, F.-H. Ko, R.-S. Zhai, C.-K. Hsu, and T.-J. Chuang, “Optical-gradient antireflective coatings for 157 nm optical lithography applications,” Appl. Opt. 43, 2141–2145 (2004).

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuat. A 111, 14–20 (2004).
[CrossRef]

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

2003 (1)

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[CrossRef]

2002 (2)

B. Pignataro, L. Sardone, and G. Marletta, “From micro to nanometric scale patterning by Langmuir—Blodgett technique,” Mater. Sci. Eng. C 22, 177–181 (2002).
[CrossRef]

M. Qi and H. I. Smith, “Achieving nanometer-scale, controllable pattern shifts in x-ray lithography using an assembly-tilting technique,” J. Vac. Sci. Technol. B 202991–2994 (2002).
[CrossRef]

2001 (2)

T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, “Multiple electron-beam lithography,” Microelectron. Eng. 57–58, 117–135 (2001).
[CrossRef]

E. Sarantopoulou, A. C. Cefalas, P. Argitis, and E. Gogolides, “Photoresist materials for 157 nm photolithography,” Mater. Sci. Eng. C, 15, 159–161 (2001).
[CrossRef]

1998 (1)

1996 (2)

M. van den Brink, H. Jasper, S. D. Slonaker, P. Wijnhoven, and F. Klaassen, “Step-and-scan and step-and-repeat: a technology comparison,” Proc. SPIE 2726, 734–753 (1996).
[CrossRef]

A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996).
[CrossRef]

1993 (1)

1990 (1)

M. Chaker, S. Boily, B. Lafontaine, J. C. Kieffer, and H. Pepin, “X-ray wavelength optimization of the laser plasma X-ray lithography source,” Microelectron. Eng. 10, 91–105 (1990).
[CrossRef]

1987 (1)

1982 (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
[CrossRef]

1965 (1)

G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38 (1965).

Adleman, J. R.

J. W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation,” Lab Chip 10, 783–788 (2010).
[CrossRef]

Argitis, P.

E. Sarantopoulou, A. C. Cefalas, P. Argitis, and E. Gogolides, “Photoresist materials for 157 nm photolithography,” Mater. Sci. Eng. C, 15, 159–161 (2001).
[CrossRef]

Beach, R. J.

Boily, S.

M. Chaker, S. Boily, B. Lafontaine, J. C. Kieffer, and H. Pepin, “X-ray wavelength optimization of the laser plasma X-ray lithography source,” Microelectron. Eng. 10, 91–105 (1990).
[CrossRef]

Byers, J. R.

S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008).
[CrossRef]

Cefalas, A. C.

E. Sarantopoulou, A. C. Cefalas, P. Argitis, and E. Gogolides, “Photoresist materials for 157 nm photolithography,” Mater. Sci. Eng. C, 15, 159–161 (2001).
[CrossRef]

Cerrina, F.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[CrossRef]

Chaker, M.

M. Chaker, S. Boily, B. Lafontaine, J. C. Kieffer, and H. Pepin, “X-ray wavelength optimization of the laser plasma X-ray lithography source,” Microelectron. Eng. 10, 91–105 (1990).
[CrossRef]

Chang, T. H. P.

T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, “Multiple electron-beam lithography,” Microelectron. Eng. 57–58, 117–135 (2001).
[CrossRef]

Chen, H. L.

Choi, J. W.

J. W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation,” Lab Chip 10, 783–788 (2010).
[CrossRef]

Chuang, T.-J.

Dane, C. B.

David, C.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[CrossRef]

De Bisschop, P.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Ehrfeld, W.

A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996).
[CrossRef]

Fan, W.

Fernandez, A.

Ghaida, R. S.

R. S. Ghaida, G. Torres, and P. Gupta, “Single-mask double-patterning lithography,” Proc. SPIE 7488, 1–11(2009).
[CrossRef]

Gobrecht, J.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[CrossRef]

Goethals, A. M.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Gogolides, E.

E. Sarantopoulou, A. C. Cefalas, P. Argitis, and E. Gogolides, “Photoresist materials for 157 nm photolithography,” Mater. Sci. Eng. C, 15, 159–161 (2001).
[CrossRef]

Golovkina, V.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[CrossRef]

Gupta, P.

R. S. Ghaida, G. Torres, and P. Gupta, “Single-mask double-patterning lithography,” Proc. SPIE 7488, 1–11(2009).
[CrossRef]

Hackel, L. A.

Han, M.

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuat. A 111, 14–20 (2004).
[CrossRef]

Hector, S.

K. Lucas, S. Postnikov, C. Henderson, and S. Hector, “Lithography: Concepts, Challenges and Prospects,” in Nano and Giga Challenges in MicroelectronicsJ. Greer, A. Korkin, and J. Labanowski, eds (Elsevier, 2003).

Henderson, C.

K. Lucas, S. Postnikov, C. Henderson, and S. Hector, “Lithography: Concepts, Challenges and Prospects,” in Nano and Giga Challenges in MicroelectronicsJ. Greer, A. Korkin, and J. Labanowski, eds (Elsevier, 2003).

Hermans, J.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Hsu, C.-K.

Ivaldi, J.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Izadi, N.

Y. Komijani, N. Izadi, B. Khadem-Hosseinieh, and S. Mohajerzadeh “Ultraviolet assisted 3-D microstructures on PET,” IEEE Sens. J. 6, 851–853 (2006).
[CrossRef]

Jasper, H.

M. van den Brink, H. Jasper, S. D. Slonaker, P. Wijnhoven, and F. Klaassen, “Step-and-scan and step-and-repeat: a technology comparison,” Proc. SPIE 2726, 734–753 (1996).
[CrossRef]

Jen, K.

S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008).
[CrossRef]

Jonckheere, R.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Khadem-Hosseinieh, B.

Y. Komijani, N. Izadi, B. Khadem-Hosseinieh, and S. Mohajerzadeh “Ultraviolet assisted 3-D microstructures on PET,” IEEE Sens. J. 6, 851–853 (2006).
[CrossRef]

Kieffer, J. C.

M. Chaker, S. Boily, B. Lafontaine, J. C. Kieffer, and H. Pepin, “X-ray wavelength optimization of the laser plasma X-ray lithography source,” Microelectron. Eng. 10, 91–105 (1990).
[CrossRef]

Kim, S. O.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[CrossRef]

Klaassen, F.

M. van den Brink, H. Jasper, S. D. Slonaker, P. Wijnhoven, and F. Klaassen, “Step-and-scan and step-and-repeat: a technology comparison,” Proc. SPIE 2726, 734–753 (1996).
[CrossRef]

Ko, F.-H.

Komijani, Y.

Y. Komijani, N. Izadi, B. Khadem-Hosseinieh, and S. Mohajerzadeh “Ultraviolet assisted 3-D microstructures on PET,” IEEE Sens. J. 6, 851–853 (2006).
[CrossRef]

Lafontaine, B.

M. Chaker, S. Boily, B. Lafontaine, J. C. Kieffer, and H. Pepin, “X-ray wavelength optimization of the laser plasma X-ray lithography source,” Microelectron. Eng. 10, 91–105 (1990).
[CrossRef]

Lee, K. Y.

T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, “Multiple electron-beam lithography,” Microelectron. Eng. 57–58, 117–135 (2001).
[CrossRef]

Lee, S.

S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008).
[CrossRef]

Lee, S. K.

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuat. A 111, 14–20 (2004).
[CrossRef]

Lee, S. S.

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuat. A 111, 14–20 (2004).
[CrossRef]

Lee, W.

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuat. A 111, 14–20 (2004).
[CrossRef]

Lehr, H.

A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996).
[CrossRef]

Levenson, M. D.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
[CrossRef]

Light, S.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Lin, B. J.

B. J. Lin, “Optical lithography—present and future challenges,” C. R. Phys. 7, 858–874 (2006).
[CrossRef]

Lucas, K.

K. Lucas, S. Postnikov, C. Henderson, and S. Hector, “Lithography: Concepts, Challenges and Prospects,” in Nano and Giga Challenges in MicroelectronicsJ. Greer, A. Korkin, and J. Labanowski, eds (Elsevier, 2003).

Mack, C. A.

C. A. Mack, “Seeing double,” IEEE Spectrum 45, 46–51 (2008).
[CrossRef]

C. A. Mack, “The optical behavior of pellicles,” Microlithogr. World 16, 10–11 (2007).

Mankos, M.

T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, “Multiple electron-beam lithography,” Microelectron. Eng. 57–58, 117–135 (2001).
[CrossRef]

Marletta, G.

B. Pignataro, L. Sardone, and G. Marletta, “From micro to nanometric scale patterning by Langmuir—Blodgett technique,” Mater. Sci. Eng. C 22, 177–181 (2002).
[CrossRef]

McAfferty, D.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Miller, L.

A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996).
[CrossRef]

Mohajerzadeh, S.

Y. Komijani, N. Izadi, B. Khadem-Hosseinieh, and S. Mohajerzadeh “Ultraviolet assisted 3-D microstructures on PET,” IEEE Sens. J. 6, 851–853 (2006).
[CrossRef]

Moore, G. E.

G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38 (1965).

Muray, L. P.

T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, “Multiple electron-beam lithography,” Microelectron. Eng. 57–58, 117–135 (2001).
[CrossRef]

Nealey, P. F.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[CrossRef]

Niklaus, M.

J. W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation,” Lab Chip 10, 783–788 (2010).
[CrossRef]

Okoroanyanwu, U.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Oneil, T.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Pepin, H.

M. Chaker, S. Boily, B. Lafontaine, J. C. Kieffer, and H. Pepin, “X-ray wavelength optimization of the laser plasma X-ray lithography source,” Microelectron. Eng. 10, 91–105 (1990).
[CrossRef]

Phillion, D. W.

Pignataro, B.

B. Pignataro, L. Sardone, and G. Marletta, “From micro to nanometric scale patterning by Langmuir—Blodgett technique,” Mater. Sci. Eng. C 22, 177–181 (2002).
[CrossRef]

Postnikov, S.

K. Lucas, S. Postnikov, C. Henderson, and S. Hector, “Lithography: Concepts, Challenges and Prospects,” in Nano and Giga Challenges in MicroelectronicsJ. Greer, A. Korkin, and J. Labanowski, eds (Elsevier, 2003).

Psaltis, D.

J. W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation,” Lab Chip 10, 783–788 (2010).
[CrossRef]

Qi, M.

M. Qi and H. I. Smith, “Achieving nanometer-scale, controllable pattern shifts in x-ray lithography using an assembly-tilting technique,” J. Vac. Sci. Technol. B 202991–2994 (2002).
[CrossRef]

Reuther, F.

A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996).
[CrossRef]

Rice, B.

S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008).
[CrossRef]

Ronse, K.

K. Ronse, “Optical lithography: a historical perspective,” C. R. Phys. 7, 844–857 (2006).
[CrossRef]

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Rosset, S.

J. W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation,” Lab Chip 10, 783–788 (2010).
[CrossRef]

Sarantopoulou, E.

E. Sarantopoulou, A. C. Cefalas, P. Argitis, and E. Gogolides, “Photoresist materials for 157 nm photolithography,” Mater. Sci. Eng. C, 15, 159–161 (2001).
[CrossRef]

Sardone, L.

B. Pignataro, L. Sardone, and G. Marletta, “From micro to nanometric scale patterning by Langmuir—Blodgett technique,” Mater. Sci. Eng. C 22, 177–181 (2002).
[CrossRef]

Schmidt, A.

A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996).
[CrossRef]

Schmidt, M.

A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996).
[CrossRef]

Sewell, H.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

Shea, H.

J. W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation,” Lab Chip 10, 783–788 (2010).
[CrossRef]

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
[CrossRef]

Slonaker, S. D.

M. van den Brink, H. Jasper, S. D. Slonaker, P. Wijnhoven, and F. Klaassen, “Step-and-scan and step-and-repeat: a technology comparison,” Proc. SPIE 2726, 734–753 (1996).
[CrossRef]

Smith, H. I.

M. Qi and H. I. Smith, “Achieving nanometer-scale, controllable pattern shifts in x-ray lithography using an assembly-tilting technique,” J. Vac. Sci. Technol. B 202991–2994 (2002).
[CrossRef]

Solak, H. H.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[CrossRef]

Torres, G.

R. S. Ghaida, G. Torres, and P. Gupta, “Single-mask double-patterning lithography,” Proc. SPIE 7488, 1–11(2009).
[CrossRef]

Turro, N. J.

S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008).
[CrossRef]

Ulmann, A.

A. Ulmann, An Introduction to Ultrathin Organic Films(Academic, 1991).

van den Brink, M.

M. van den Brink, H. Jasper, S. D. Slonaker, P. Wijnhoven, and F. Klaassen, “Step-and-scan and step-and-repeat: a technology comparison,” Proc. SPIE 2726, 734–753 (1996).
[CrossRef]

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
[CrossRef]

Wang, T.-J.

Watso, R.

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

White, L. K.

Wijnhoven, P.

M. van den Brink, H. Jasper, S. D. Slonaker, P. Wijnhoven, and F. Klaassen, “Step-and-scan and step-and-repeat: a technology comparison,” Proc. SPIE 2726, 734–753 (1996).
[CrossRef]

Willson, C. G.

S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008).
[CrossRef]

Zapata, L. E.

Zetterer, T.

A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996).
[CrossRef]

Zhai, R.-S.

Zimmerman, P.

S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008).
[CrossRef]

Appl. Opt. (4)

C. R. Phys. (2)

K. Ronse, “Optical lithography: a historical perspective,” C. R. Phys. 7, 844–857 (2006).
[CrossRef]

B. J. Lin, “Optical lithography—present and future challenges,” C. R. Phys. 7, 858–874 (2006).
[CrossRef]

Electronics (1)

G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38 (1965).

IEEE Sens. J. (1)

Y. Komijani, N. Izadi, B. Khadem-Hosseinieh, and S. Mohajerzadeh “Ultraviolet assisted 3-D microstructures on PET,” IEEE Sens. J. 6, 851–853 (2006).
[CrossRef]

IEEE Spectrum (1)

C. A. Mack, “Seeing double,” IEEE Spectrum 45, 46–51 (2008).
[CrossRef]

IEEE Trans. Electron. Devices (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. Qi and H. I. Smith, “Achieving nanometer-scale, controllable pattern shifts in x-ray lithography using an assembly-tilting technique,” J. Vac. Sci. Technol. B 202991–2994 (2002).
[CrossRef]

Lab Chip (1)

J. W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation,” Lab Chip 10, 783–788 (2010).
[CrossRef]

Mater. Sci. Eng. C (2)

E. Sarantopoulou, A. C. Cefalas, P. Argitis, and E. Gogolides, “Photoresist materials for 157 nm photolithography,” Mater. Sci. Eng. C, 15, 159–161 (2001).
[CrossRef]

B. Pignataro, L. Sardone, and G. Marletta, “From micro to nanometric scale patterning by Langmuir—Blodgett technique,” Mater. Sci. Eng. C 22, 177–181 (2002).
[CrossRef]

Microelectron. Eng. (5)

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[CrossRef]

K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004).
[CrossRef]

T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, “Multiple electron-beam lithography,” Microelectron. Eng. 57–58, 117–135 (2001).
[CrossRef]

M. Chaker, S. Boily, B. Lafontaine, J. C. Kieffer, and H. Pepin, “X-ray wavelength optimization of the laser plasma X-ray lithography source,” Microelectron. Eng. 10, 91–105 (1990).
[CrossRef]

A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996).
[CrossRef]

Microlithogr. World (1)

C. A. Mack, “The optical behavior of pellicles,” Microlithogr. World 16, 10–11 (2007).

Proc. SPIE (3)

S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008).
[CrossRef]

R. S. Ghaida, G. Torres, and P. Gupta, “Single-mask double-patterning lithography,” Proc. SPIE 7488, 1–11(2009).
[CrossRef]

M. van den Brink, H. Jasper, S. D. Slonaker, P. Wijnhoven, and F. Klaassen, “Step-and-scan and step-and-repeat: a technology comparison,” Proc. SPIE 2726, 734–753 (1996).
[CrossRef]

Sens. Actuat. A (1)

M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuat. A 111, 14–20 (2004).
[CrossRef]

Other (2)

A. Ulmann, An Introduction to Ultrathin Organic Films(Academic, 1991).

K. Lucas, S. Postnikov, C. Henderson, and S. Hector, “Lithography: Concepts, Challenges and Prospects,” in Nano and Giga Challenges in MicroelectronicsJ. Greer, A. Korkin, and J. Labanowski, eds (Elsevier, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Standard double exposure technique. (a) photoresist coating, (b) first exposure, (c) second exposure, (d) development. This double exposure process is normally practiced in a projection exposure optical system, and unnecessary (optic) parts are not shown.

Fig. 2.
Fig. 2.

(a) Tilting exposure unit. (b) Two different exposure steps for a linear array, leading to narrower lines.

Fig. 3.
Fig. 3.

(a) The schematic view of the tilting stage where a DC motor is used to translate the tilting stage in the Z direction. The right image shows the stage from the side to clarify the operation. (b) Schematic representation illustrating the parallel transfer of the beam through the shifter medium.

Fig. 4.
Fig. 4.

Displacement “x” versus the angle for two different thicknesses of shifter medium as 10 µm and 1 mm.

Fig. 5.
Fig. 5.

Schematic of different angles on the tilting medium.

Fig. 6.
Fig. 6.

Phase shift error versus kx for different tilt angles (γ). For small values of k, the error between the linear phase shift model and the actual phase shift is negligible.

Fig. 7.
Fig. 7.

(a) Schematic of initial mask, including the line array with 15 μm pitches and 6 μm width. (b) SEM micrograph of the top view of the resist layer, including the two-dimensional structure of the line array with a line width of 1200 nm. (c) The result of similar linear array after the tilting exposure process has been utilized to realize 500 nm lines. Arrows in this figure show two exposed and nonexposed regions in each sample.

Fig. 8.
Fig. 8.

SEM micrographs of the resist layer for the sample with multiple exposure steps. (a) Single exposed, (b) A combination of single, double, and nonexposed regions, highlighted by different arrows. The double-exposed regions are fully developed and removed in the resist developing step. Inset highlights the evolution of various parts in each double-exposed line.

Fig. 9.
Fig. 9.

SEM micrograph of the resist layer for line array with sub-100 nm width. (a) An overall image, and (b) a magnified view showing lines with 82 nm width. Such lines have been created using a tilting exposure technique.

Fig. 10.
Fig. 10.

SEM micrograph of the 100 nm Cr layer for line array with 300 nm width. (a) An overall image and (b) a magnified view showing lines with 300 nm width on the 100 nm Cr layer. Such mask lines have been created using a tilting exposure technique.

Fig. 11.
Fig. 11.

SEM micrograph of the top view of the resist layer for the sample including single, double, and nonexposed regions. (a) Two-step displacement, and (b) One-step displacement. Since the SEM has been taken from one side (tilted image), the shadowing is observed in the sides which are not directly exposed to the SEM electron beam.

Fig. 12.
Fig. 12.

SEM micrograph of tilted view of the resist layer. (a) For the initial mask, without tilting and displacement, the width is 1000 nm. (b) For 600 nm displacement in the mask through proper tilting, the width of the serpentine feature is around 400 nm.

Fig. 13.
Fig. 13.

SEM micrographs of the resist layer to simulate a slanted view of the sample. (a) The SEM images of the two-dimensional structure of line array with 250 nm width, and (b) the tilted and magnified image. As seen in the tilted image, the thickness of the layer is 1200 nm. The schematic shows the way that the image has been taken in the SEM apparatus. The left image in this part also shows the sidewalls of the resist layer with a higher contrast.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R=k1λ/NAwithk1>0.5.
n1sinθ1=n2sinθ2,n1=1(air)sinθ2=1n2sinθ1
x=dsin(θ1θ2)cosθ2For smallθ:x=d(n21)θ1n2,
P(x,y,z)=12πt˜(kx,ky)ejk02kx2ky2zej(kxx+kyy)dkxdky.
θi=cos1{1k0[(cosγ)k02kx2ky2(sinγ)kx]},
Δφ(kx,ky=0)=nk0dcosθd,

Metrics