Abstract

We describe a wide-field four-wave mixing (FWM) microscope with imaging characteristics optimized for examining nanostructures. The microscope employs surface-plasmon polariton (SPP) excitation in a gold film to achieve surface-sensitive imaging conditions. The SPP surface fields boost the FWM efficiency by 2 orders of magnitude relative to the excitation efficiency of the evanescent fields at a bare glass surface. We demonstrate two excitation geometries that completely suppress the electronic FWM response of the metal film while allowing the far-field detection of FWM radiation from nanostructures at the interface. We obtained wide-field FWM images from individual carbon nanotubes and nanoclusters of neocyanine molecules at image acquisition times of 1 s, demonstrating the potential for background free, surface-enhanced FWM imaging of nanomaterials.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, C.-Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, “Four-wave mixing microscopy of nanostructures,” Adv. Opt. Photon. 3, 1–52 (2011).
    [CrossRef]
  2. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
    [CrossRef]
  3. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [CrossRef]
  4. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
    [CrossRef]
  5. H. Kim, T. Sheps, P. G. Collins, and E. O. Potma, “Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy,” Nano Lett. 9, 2991–2995 (2009).
    [CrossRef]
  6. Y. Jung, L. Tong, A. Tanaudommongkon, J. X. Cheng, and C. Yang, “In vitro and in vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009).
    [CrossRef]
  7. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
    [CrossRef]
  8. R. M. Corn and D. A. Higgens, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94, 107–125 (1994).
    [CrossRef]
  9. S. A. Maier, ed., Plasmonics: Fundamentals and Applications (Springer, 2007).
  10. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [CrossRef]
  11. D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
    [CrossRef]
  12. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  14. J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
    [CrossRef]
  15. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
    [CrossRef]
  16. H. Chew, D. S. Wang, and M. Kerker, “Surface enhancement of coherent anti-Stokes Raman scattering by colloidal spheres,” J. Opt. Soc. Am. B 1, 56–66 (1984).
    [CrossRef]
  17. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
    [CrossRef]
  18. T. W. Koo, S. Chan, and A. A. Berlin, “Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering,” Opt. Lett. 30, 1024–1026 (2005).
    [CrossRef]
  19. V. Namboodiri, M. Namboodiri, G. I. Cava-Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56, 9–12 (2011).
    [CrossRef]
  20. C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
    [CrossRef]
  21. R. R. Frontiera, A. I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. Lett. 2, 1199–1203 (2011).
    [CrossRef]
  22. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
    [CrossRef]
  23. J. Renger, R. Quidant, N. V. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
    [CrossRef]
  24. J. Renger, R. Quidant, N. V. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
    [CrossRef]
  25. S. Palomba, S. Zhang, Y. Park, G. Bratal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2012).
    [CrossRef]
  26. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
    [CrossRef]
  27. X. Liu, Y. Wang, and E. O. Potma, “Surface-mediated four-wave mixing of nanostructures with counterpropagating surface plasmon polaritons,” Opt. Lett. 36, 2348–2350(2011).
    [CrossRef]
  28. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
    [CrossRef]
  29. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  30. T. Funantsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
    [CrossRef]
  31. R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14, 9307–9316 (2006).
    [CrossRef]
  32. R. Y. He, Y. D. Su, K. C. Cho, C. Y. Lin, N. S. Chang, C. H. Chang, and S. J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17, 5987–5997 (2009).
    [CrossRef]
  33. R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “Second harmonic generation at thin film silver electrodes via surface polaritons,” J. Chem. Phys. 81, 4127–4132 (1984).
    [CrossRef]
  34. C. Qian, T. S. Velinov, M. C. Pitter, and M. G. Somekh, “Surface plasmon-assisted widefield non-linear imaging of gold structures,” J. Microsc. 229, 6–11 (2008).
    [CrossRef]
  35. C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84, 816–818 (2004).
    [CrossRef]
  36. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination,” Opt. Lett. 32, 1941–1943 (2007).
    [CrossRef]
  37. A. Jesacher, C. Roider, S. Khan, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Contrast enhancement in widefield CARS microscopy by tailored phase-matching using a spatial light modulator,” Opt. Lett. 36, 2245–2247 (2011).
    [CrossRef]
  38. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
    [CrossRef]
  39. E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
    [CrossRef]
  40. J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011).
    [CrossRef]

2012

S. Palomba, S. Zhang, Y. Park, G. Bratal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2012).
[CrossRef]

2011

V. Namboodiri, M. Namboodiri, G. I. Cava-Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56, 9–12 (2011).
[CrossRef]

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[CrossRef]

R. R. Frontiera, A. I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. Lett. 2, 1199–1203 (2011).
[CrossRef]

X. Liu, Y. Wang, and E. O. Potma, “Surface-mediated four-wave mixing of nanostructures with counterpropagating surface plasmon polaritons,” Opt. Lett. 36, 2348–2350(2011).
[CrossRef]

Y. Wang, C.-Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, “Four-wave mixing microscopy of nanostructures,” Adv. Opt. Photon. 3, 1–52 (2011).
[CrossRef]

A. Jesacher, C. Roider, S. Khan, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Contrast enhancement in widefield CARS microscopy by tailored phase-matching using a spatial light modulator,” Opt. Lett. 36, 2245–2247 (2011).
[CrossRef]

J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011).
[CrossRef]

2010

J. Renger, R. Quidant, N. V. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

2009

J. Renger, R. Quidant, N. V. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

R. Y. He, Y. D. Su, K. C. Cho, C. Y. Lin, N. S. Chang, C. H. Chang, and S. J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17, 5987–5997 (2009).
[CrossRef]

H. Kim, T. Sheps, P. G. Collins, and E. O. Potma, “Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy,” Nano Lett. 9, 2991–2995 (2009).
[CrossRef]

Y. Jung, L. Tong, A. Tanaudommongkon, J. X. Cheng, and C. Yang, “In vitro and in vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009).
[CrossRef]

2008

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

C. Qian, T. S. Velinov, M. C. Pitter, and M. G. Somekh, “Surface plasmon-assisted widefield non-linear imaging of gold structures,” J. Microsc. 229, 6–11 (2008).
[CrossRef]

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef]

2007

2006

2005

2004

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84, 816–818 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[CrossRef]

2002

1995

T. Funantsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef]

1994

R. M. Corn and D. A. Higgens, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94, 107–125 (1994).
[CrossRef]

1989

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

1985

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1984

H. Chew, D. S. Wang, and M. Kerker, “Surface enhancement of coherent anti-Stokes Raman scattering by colloidal spheres,” J. Opt. Soc. Am. B 1, 56–66 (1984).
[CrossRef]

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
[CrossRef]

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “Second harmonic generation at thin film silver electrodes via surface polaritons,” J. Chem. Phys. 81, 4127–4132 (1984).
[CrossRef]

1979

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[CrossRef]

1977

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

1974

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Aslan, K.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

Axelrod, D.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
[CrossRef]

Badugu, R.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Baumberg, J. J.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[CrossRef]

Berlin, A. A.

Bernet, S.

Bratal, G.

S. Palomba, S. Zhang, Y. Park, G. Bratal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2012).
[CrossRef]

Burghardt, T. P.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
[CrossRef]

Cava-Diaz, G. I.

V. Namboodiri, M. Namboodiri, G. I. Cava-Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56, 9–12 (2011).
[CrossRef]

Chan, S.

Chang, C. H.

Chang, G. L.

Chang, N. S.

Chen, C. K.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[CrossRef]

Chen, S. J.

Cheng, J. X.

Y. Jung, L. Tong, A. Tanaudommongkon, J. X. Cheng, and C. Yang, “In vitro and in vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

Chew, H.

Chiu, K. C.

Cho, K. C.

Cohn, K.

Collins, P. G.

H. Kim, T. Sheps, P. G. Collins, and E. O. Potma, “Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy,” Nano Lett. 9, 2991–2995 (2009).
[CrossRef]

Corn, R. M.

R. M. Corn and D. A. Higgens, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94, 107–125 (1994).
[CrossRef]

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “Second harmonic generation at thin film silver electrodes via surface polaritons,” J. Chem. Phys. 81, 4127–4132 (1984).
[CrossRef]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef]

de Castro, A. R. B.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Duyne, R. P. V.

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Flachenecker, G.

V. Namboodiri, M. Namboodiri, G. I. Cava-Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56, 9–12 (2011).
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Fort, E.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Frontiera, R. R.

R. R. Frontiera, A. I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. Lett. 2, 1199–1203 (2011).
[CrossRef]

Funantsu, T.

T. Funantsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef]

Geddes, C. D.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

Grésillon, S.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

Gruenke, N. L.

R. R. Frontiera, A. I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. Lett. 2, 1199–1203 (2011).
[CrossRef]

Gryczynski, I.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

Gryczynski, Z.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

Harada, Y.

T. Funantsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

He, R. Y.

Heinrich, C.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84, 816–818 (2004).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Henry, A. I.

R. R. Frontiera, A. I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. Lett. 2, 1199–1203 (2011).
[CrossRef]

Higgens, D. A.

R. M. Corn and D. A. Higgens, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94, 107–125 (1994).
[CrossRef]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Huang, J.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

Hulst, N. V.

J. Renger, R. Quidant, N. V. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

Jesacher, A.

Jung, Y.

Y. Jung, L. Tong, A. Tanaudommongkon, J. X. Cheng, and C. Yang, “In vitro and in vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009).
[CrossRef]

Kaminski, C. F.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[CrossRef]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

Kerker, M.

Khan, S.

Kim, H.

H. Kim, T. Sheps, P. G. Collins, and E. O. Potma, “Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy,” Nano Lett. 9, 2991–2995 (2009).
[CrossRef]

Koo, T. W.

Lakowicz, J. R.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

Levenson, M. D.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “Second harmonic generation at thin film silver electrodes via surface polaritons,” J. Chem. Phys. 81, 4127–4132 (1984).
[CrossRef]

Lin, C. H.

Lin, C. Y.

Lin, C.-Y.

Liu, X.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Lukomska, J.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

Mahajan, S.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[CrossRef]

Malicka, J.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

Materny, A.

V. Namboodiri, M. Namboodiri, G. I. Cava-Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56, 9–12 (2011).
[CrossRef]

Matveeva, E.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Namboodiri, M.

V. Namboodiri, M. Namboodiri, G. I. Cava-Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56, 9–12 (2011).
[CrossRef]

Namboodiri, V.

V. Namboodiri, M. Namboodiri, G. I. Cava-Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56, 9–12 (2011).
[CrossRef]

Nikolaenko, A.

Novotny, L.

J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef]

Oppermann, M.

V. Namboodiri, M. Namboodiri, G. I. Cava-Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56, 9–12 (2011).
[CrossRef]

Palanker, D.

Palomba, S.

S. Palomba, S. Zhang, Y. Park, G. Bratal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2012).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef]

Park, Y.

S. Palomba, S. Zhang, Y. Park, G. Bratal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2012).
[CrossRef]

Philpott, M. R.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “Second harmonic generation at thin film silver electrodes via surface polaritons,” J. Chem. Phys. 81, 4127–4132 (1984).
[CrossRef]

Pitter, M. C.

C. Qian, T. S. Velinov, M. C. Pitter, and M. G. Somekh, “Surface plasmon-assisted widefield non-linear imaging of gold structures,” J. Microsc. 229, 6–11 (2008).
[CrossRef]

Potma, E. O.

X. Liu, Y. Wang, and E. O. Potma, “Surface-mediated four-wave mixing of nanostructures with counterpropagating surface plasmon polaritons,” Opt. Lett. 36, 2348–2350(2011).
[CrossRef]

Y. Wang, C.-Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, “Four-wave mixing microscopy of nanostructures,” Adv. Opt. Photon. 3, 1–52 (2011).
[CrossRef]

H. Kim, T. Sheps, P. G. Collins, and E. O. Potma, “Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy,” Nano Lett. 9, 2991–2995 (2009).
[CrossRef]

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[CrossRef]

Qian, C.

C. Qian, T. S. Velinov, M. C. Pitter, and M. G. Somekh, “Surface plasmon-assisted widefield non-linear imaging of gold structures,” J. Microsc. 229, 6–11 (2008).
[CrossRef]

Quidant, R.

J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

Raghunathan, V.

Renger, J.

J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

Ritsch-Marte, M.

Roider, C.

Romagnoli, M.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “Second harmonic generation at thin film silver electrodes via surface polaritons,” J. Chem. Phys. 81, 4127–4132 (1984).
[CrossRef]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Saito, K.

T. Funantsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef]

Shen, Y. R.

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[CrossRef]

Sheps, T.

H. Kim, T. Sheps, P. G. Collins, and E. O. Potma, “Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy,” Nano Lett. 9, 2991–2995 (2009).
[CrossRef]

Simanovskii, D.

Smith, T.

Somekh, M. G.

C. Qian, T. S. Velinov, M. C. Pitter, and M. G. Somekh, “Surface plasmon-assisted widefield non-linear imaging of gold structures,” J. Microsc. 229, 6–11 (2008).
[CrossRef]

Steuwe, C.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[CrossRef]

Su, Y. D.

Tanaudommongkon, A.

Y. Jung, L. Tong, A. Tanaudommongkon, J. X. Cheng, and C. Yang, “In vitro and in vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009).
[CrossRef]

Thalhammer, G.

Thompson, N. L.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
[CrossRef]

Tokunaga, M.

T. Funantsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef]

Tong, L.

Y. Jung, L. Tong, A. Tanaudommongkon, J. X. Cheng, and C. Yang, “In vitro and in vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009).
[CrossRef]

Toytman, I.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Van Duyne, R. P.

R. R. Frontiera, A. I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. Lett. 2, 1199–1203 (2011).
[CrossRef]

Velinov, T. S.

C. Qian, T. S. Velinov, M. C. Pitter, and M. G. Somekh, “Surface plasmon-assisted widefield non-linear imaging of gold structures,” J. Microsc. 229, 6–11 (2008).
[CrossRef]

Volkmer, A.

Wang, D. S.

Wang, Y.

Wu, H. L.

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

Yanagida, T.

T. Funantsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef]

Yang, C.

Y. Jung, L. Tong, A. Tanaudommongkon, J. X. Cheng, and C. Yang, “In vitro and in vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009).
[CrossRef]

Yin, X.

S. Palomba, S. Zhang, Y. Park, G. Bratal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2012).
[CrossRef]

Zhang, J.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

Zhang, S.

S. Palomba, S. Zhang, Y. Park, G. Bratal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2012).
[CrossRef]

Zhang, X.

S. Palomba, S. Zhang, Y. Park, G. Bratal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2012).
[CrossRef]

Adv. Opt. Photon.

Annu. Rev. Anal. Chem.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Annu. Rev. Biophys. Bioeng.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
[CrossRef]

Appl. Phys. Lett.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84, 816–818 (2004).
[CrossRef]

Chem. Phys. Lett.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Chem. Rev.

R. M. Corn and D. A. Higgens, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94, 107–125 (1994).
[CrossRef]

J. Chem. Phys.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “Second harmonic generation at thin film silver electrodes via surface polaritons,” J. Chem. Phys. 81, 4127–4132 (1984).
[CrossRef]

J. Electroanal. Chem.

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

J. Fluoresc.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004).
[CrossRef]

J. Microsc.

C. Qian, T. S. Velinov, M. C. Pitter, and M. G. Somekh, “Surface plasmon-assisted widefield non-linear imaging of gold structures,” J. Microsc. 229, 6–11 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Lett.

R. R. Frontiera, A. I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. Lett. 2, 1199–1203 (2011).
[CrossRef]

J. Phys. D

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

J. Raman Spectrosc.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[CrossRef]

Nano Lett.

H. Kim, T. Sheps, P. G. Collins, and E. O. Potma, “Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy,” Nano Lett. 9, 2991–2995 (2009).
[CrossRef]

Y. Jung, L. Tong, A. Tanaudommongkon, J. X. Cheng, and C. Yang, “In vitro and in vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009).
[CrossRef]

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[CrossRef]

Nat. Mater.

S. Palomba, S. Zhang, Y. Park, G. Bratal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2012).
[CrossRef]

Nature

T. Funantsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995).
[CrossRef]

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef]

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[CrossRef]

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef]

Rev. Mod. Phys.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Science

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef]

Vib. Spectrosc.

V. Namboodiri, M. Namboodiri, G. I. Cava-Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56, 9–12 (2011).
[CrossRef]

Other

S. A. Maier, ed., Plasmonics: Fundamentals and Applications (Springer, 2007).

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. A, the glass slide holding the sample is mounted on a BK7 prism and FWM radiation is collected on the air side of the Au film using a high numerical aperture lens. A tube lens is used to form an image onto a CCD camera. FWM radiation is filtered with a bandpass filter. B, collinear excitation geometry. Nanoparticles deposited on the Au film are symbolized by the black dots. C, counterpropagating excitation geometry. D, dispersion of the lateral component of the SPP wave vector. Red line indicates the dispersion of the SPP wave vector at the Au/air interface. Solid black lines give the wave vector of freely propagating light in air and in glass (BK7). The SPP wave vectors at the FWM frequency (ω3, 650 nm) are indicated for both the collinear and counterpropagating geometries.

Fig. 2.
Fig. 2.

Surface-enhanced FWM of Si nanoparticles. A, far-field FWM image of Si nanoparticles on a 10 μm-striped Au film. The transmission image obtained by illuminating the sample with white light is shown in gray. B, same image as in A without the transmission image. C, FWM image when the excitation beams are temporally offset (500fs). D, FWM image when the incident beams are S polarized with respect to the Au film.

Fig. 3.
Fig. 3.

Differences between collinear and counterpropagating excitation schemes. A–E, FWM images in the collinear excitation geometry as a function of time delay between the excitation pulses. F–J, FWM images in the counterpropagating excitation geometry as a function of time delay between the excitation pulses. The insets show the calculated spatio-temporal excitation density (I12I2) for each time delay.

Fig. 4.
Fig. 4.

Wide-field FWM imaging of carbon nanotubes using the collinear geometry. A, SEM image of a multiwalled carbon nanotube. B, Corresponding FWM image.

Fig. 5.
Fig. 5.

A, Wide-field FWM image of neocyanine microsized and nanosized clusters using the collinear geometry. B, Absorption profile or neocyanine. The shaded areas indicate the excitation wavelengths of the incident beams.

Metrics