Abstract

Distinguishing octane numbers of commercial gasoline is experimentally demonstrated by use of single split-ring resonator metamaterials functioning at terahertz frequencies. The differences in frequency-dependent absorption coefficients and refractive indices of various grades of gasoline lead to a modification in the surrounding dielectric environment and consequently the resonance properties of the planar metamaterials. This consequently enables a distinct frequency shift in the inductive-capacitive electric dipolar resonances. This paper reveals that such metamaterial arrays, as highly sensitive chemical sensors, have promising potential in petroleum industrial applications.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
    [CrossRef]
  2. H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008).
    [CrossRef]
  3. I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
    [CrossRef]
  4. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
    [CrossRef]
  5. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
    [CrossRef]
  6. N. Papasimakis, Z. Luo, Z. X. Shen, F. D. Angelis, E. D. Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in photonic metamaterial,” Opt. Express 18, 8353–8359 (2010).
    [CrossRef]
  7. X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
    [CrossRef]
  8. X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
    [CrossRef]
  9. S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Thin substrates for enhanced metamaterial sensing applications,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI31.
  10. Annual book of ASTM standards, ASTM, West Conshohocken, PA, 2000.
  11. American Society for Testing and Materials, “Standard testing method for knock characteristics of motor fuels by the research method,” ASTM D2699 (ASTM, 1985).
  12. G. E. Foder, K. B. Kohl, and R. L. Mason, “Analysis of gasoline by FT-IR spectroscopy,” Anal. Chem. 68, 23–30 (1996).
    [CrossRef]
  13. P. E. Flecher, W. T. Welch, S. Albin, and J. B. Cooper, “Determination of octane numbers and rapid vapor pressure in commercial gasoline using dispersive fiber-optic Raman spectroscopy,” Spectrochim. Acta A 53, 199–206 (1997).
    [CrossRef]
  14. D. Steers, C. Gerrard, B. Hirst, W. Sibbett, and M. J. Padgett, “Gasoline analysis and brand identification using a static Fourier transform ultraviolet spectrometer,” J. Opt. A: Pure Appl. Opt. 1, 680–684 (1999).
    [CrossRef]
  15. J. Kelly, C. Barlow, T. Jinguji, and J. Gallis, “Prediction of gasoline octane numbers from near-infrared spectral features in the range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
    [CrossRef]
  16. M. H. Brooker and R. W. Berg, “Non-invasive spectroscopic on-line methods to measure industrial processes: a review,” presented at Green Industrial Applications of Ionic Liquids, a NATO Advanced Research Workshop, Crete, Greece, 12–16 April 2000.
  17. F. M. Al-Douseri, Y. Chen, and X.-C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
    [CrossRef]
  18. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  19. G. Kumar, A. Cui, S. Pandey, and A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19, 1072–1080 (2011).
    [CrossRef]
  20. W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
    [CrossRef]
  21. A. K. Azad, J. M. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634–636 (2006).
    [CrossRef]
  22. R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16, 6537–6543 (2008).
    [CrossRef]
  23. J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989–1993 (2006).
    [CrossRef]
  24. S. Sree Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94, 09118 (2009).
    [CrossRef]
  25. Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
    [CrossRef]

2011 (1)

2010 (2)

N. Papasimakis, Z. Luo, Z. X. Shen, F. D. Angelis, E. D. Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in photonic metamaterial,” Opt. Express 18, 8353–8359 (2010).
[CrossRef]

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

2009 (4)

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

S. Sree Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94, 09118 (2009).
[CrossRef]

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

2008 (5)

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16, 6537–6543 (2008).
[CrossRef]

H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

2007 (2)

F. M. Al-Douseri, Y. Chen, and X.-C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

2006 (2)

A. K. Azad, J. M. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634–636 (2006).
[CrossRef]

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989–1993 (2006).
[CrossRef]

1999 (1)

D. Steers, C. Gerrard, B. Hirst, W. Sibbett, and M. J. Padgett, “Gasoline analysis and brand identification using a static Fourier transform ultraviolet spectrometer,” J. Opt. A: Pure Appl. Opt. 1, 680–684 (1999).
[CrossRef]

1997 (1)

P. E. Flecher, W. T. Welch, S. Albin, and J. B. Cooper, “Determination of octane numbers and rapid vapor pressure in commercial gasoline using dispersive fiber-optic Raman spectroscopy,” Spectrochim. Acta A 53, 199–206 (1997).
[CrossRef]

1996 (1)

G. E. Foder, K. B. Kohl, and R. L. Mason, “Analysis of gasoline by FT-IR spectroscopy,” Anal. Chem. 68, 23–30 (1996).
[CrossRef]

1990 (1)

1989 (1)

J. Kelly, C. Barlow, T. Jinguji, and J. Gallis, “Prediction of gasoline octane numbers from near-infrared spectral features in the range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Albin, S.

P. E. Flecher, W. T. Welch, S. Albin, and J. B. Cooper, “Determination of octane numbers and rapid vapor pressure in commercial gasoline using dispersive fiber-optic Raman spectroscopy,” Spectrochim. Acta A 53, 199–206 (1997).
[CrossRef]

Al-Douseri, F. M.

F. M. Al-Douseri, Y. Chen, and X.-C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

Al-Naib, I. A. I.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

Andreev, G. O.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Angelis, F. D.

Arrington, C. L.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Averitt, R. D.

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

Azad, A. K.

A. K. Azad, J. M. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634–636 (2006).
[CrossRef]

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989–1993 (2006).
[CrossRef]

Barlow, C.

J. Kelly, C. Barlow, T. Jinguji, and J. Gallis, “Prediction of gasoline octane numbers from near-infrared spectral features in the range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Basov, D. N.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Berg, R. W.

M. H. Brooker and R. W. Berg, “Non-invasive spectroscopic on-line methods to measure industrial processes: a review,” presented at Green Industrial Applications of Ionic Liquids, a NATO Advanced Research Workshop, Crete, Greece, 12–16 April 2000.

Bettiol, A. A.

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Thin substrates for enhanced metamaterial sensing applications,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI31.

Brener, I.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

Brooker, M. H.

M. H. Brooker and R. W. Berg, “Non-invasive spectroscopic on-line methods to measure industrial processes: a review,” presented at Green Industrial Applications of Ionic Liquids, a NATO Advanced Research Workshop, Crete, Greece, 12–16 April 2000.

Chen, W.

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989–1993 (2006).
[CrossRef]

Chen, Y.

F. M. Al-Douseri, Y. Chen, and X.-C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

Chiam, S.

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Thin substrates for enhanced metamaterial sensing applications,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI31.

Cho, S. Y.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Cooper, J. B.

P. E. Flecher, W. T. Welch, S. Albin, and J. B. Cooper, “Determination of octane numbers and rapid vapor pressure in commercial gasoline using dispersive fiber-optic Raman spectroscopy,” Spectrochim. Acta A 53, 199–206 (1997).
[CrossRef]

Cui, A.

Dai, J. M.

Dokmeci, M. R.

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

Driscoll, T.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Fabrizio, E. D.

Fattinger, Ch.

Flecher, P. E.

P. E. Flecher, W. T. Welch, S. Albin, and J. B. Cooper, “Determination of octane numbers and rapid vapor pressure in commercial gasoline using dispersive fiber-optic Raman spectroscopy,” Spectrochim. Acta A 53, 199–206 (1997).
[CrossRef]

Foder, G. E.

G. E. Foder, K. B. Kohl, and R. L. Mason, “Analysis of gasoline by FT-IR spectroscopy,” Anal. Chem. 68, 23–30 (1996).
[CrossRef]

Gallis, J.

J. Kelly, C. Barlow, T. Jinguji, and J. Gallis, “Prediction of gasoline octane numbers from near-infrared spectral features in the range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Gerrard, C.

D. Steers, C. Gerrard, B. Hirst, W. Sibbett, and M. J. Padgett, “Gasoline analysis and brand identification using a static Fourier transform ultraviolet spectrometer,” J. Opt. A: Pure Appl. Opt. 1, 680–684 (1999).
[CrossRef]

Grischkowsky, D.

S. Sree Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94, 09118 (2009).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

Gu, J.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Han, J.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989–1993 (2006).
[CrossRef]

Harsha, S. Sree

S. Sree Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94, 09118 (2009).
[CrossRef]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Hirst, B.

D. Steers, C. Gerrard, B. Hirst, W. Sibbett, and M. J. Padgett, “Gasoline analysis and brand identification using a static Fourier transform ultraviolet spectrometer,” J. Opt. A: Pure Appl. Opt. 1, 680–684 (1999).
[CrossRef]

Jansen, C.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

Jinguji, T.

J. Kelly, C. Barlow, T. Jinguji, and J. Gallis, “Prediction of gasoline octane numbers from near-infrared spectral features in the range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Jokerst, N. M.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Keiding, S.

Kelly, J.

J. Kelly, C. Barlow, T. Jinguji, and J. Gallis, “Prediction of gasoline octane numbers from near-infrared spectral features in the range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Koch, M.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

Kohl, K. B.

G. E. Foder, K. B. Kohl, and R. L. Mason, “Analysis of gasoline by FT-IR spectroscopy,” Anal. Chem. 68, 23–30 (1996).
[CrossRef]

Kumar, G.

Laman, N.

S. Sree Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94, 09118 (2009).
[CrossRef]

Lee, H.-J.

H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008).
[CrossRef]

Liu, X.

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

Lu, X.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Luo, Z.

MacNaughton, S.

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

Mason, R. L.

G. E. Foder, K. B. Kohl, and R. L. Mason, “Analysis of gasoline by FT-IR spectroscopy,” Anal. Chem. 68, 23–30 (1996).
[CrossRef]

Nahata, A.

Nikolaenko, A. E.

O’Hara, J. F.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16, 6537–6543 (2008).
[CrossRef]

Padgett, M. J.

D. Steers, C. Gerrard, B. Hirst, W. Sibbett, and M. J. Padgett, “Gasoline analysis and brand identification using a static Fourier transform ultraviolet spectrometer,” J. Opt. A: Pure Appl. Opt. 1, 680–684 (1999).
[CrossRef]

Padilla, W. J.

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

Palit, S.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Pandey, S.

Papasimakis, N.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Peralta, X. G.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Selvarasah, S.

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

Shen, Z. X.

Shrekenhamer, D. B.

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

Sibbett, W.

D. Steers, C. Gerrard, B. Hirst, W. Sibbett, and M. J. Padgett, “Gasoline analysis and brand identification using a static Fourier transform ultraviolet spectrometer,” J. Opt. A: Pure Appl. Opt. 1, 680–684 (1999).
[CrossRef]

Singh, R.

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16, 6537–6543 (2008).
[CrossRef]

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Thin substrates for enhanced metamaterial sensing applications,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI31.

Smirnova, E.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16, 6537–6543 (2008).
[CrossRef]

Smith, D. R.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Sonkusale, S.

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

Steers, D.

D. Steers, C. Gerrard, B. Hirst, W. Sibbett, and M. J. Padgett, “Gasoline analysis and brand identification using a static Fourier transform ultraviolet spectrometer,” J. Opt. A: Pure Appl. Opt. 1, 680–684 (1999).
[CrossRef]

Strikwerda, A.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

Tao, H.

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

Taylor, A. J.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16, 6537–6543 (2008).
[CrossRef]

Thamizhmani, L.

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989–1993 (2006).
[CrossRef]

Tian, Z.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Totachawattana, A.

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

van Exter, M.

Wanke, M. C.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

Welch, W. T.

P. E. Flecher, W. T. Welch, S. Albin, and J. B. Cooper, “Determination of octane numbers and rapid vapor pressure in commercial gasoline using dispersive fiber-optic Raman spectroscopy,” Spectrochim. Acta A 53, 199–206 (1997).
[CrossRef]

Williams, J. D.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Xing, Q.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Yook, J.-G.

H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Zhang, W.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16, 6537–6543 (2008).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989–1993 (2006).
[CrossRef]

A. K. Azad, J. M. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634–636 (2006).
[CrossRef]

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Thin substrates for enhanced metamaterial sensing applications,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI31.

Zhang, X.-C.

F. M. Al-Douseri, Y. Chen, and X.-C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

Zheludev, N. I.

Zhu, Z.

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989–1993 (2006).
[CrossRef]

Anal. Chem. (2)

G. E. Foder, K. B. Kohl, and R. L. Mason, “Analysis of gasoline by FT-IR spectroscopy,” Anal. Chem. 68, 23–30 (1996).
[CrossRef]

J. Kelly, C. Barlow, T. Jinguji, and J. Gallis, “Prediction of gasoline octane numbers from near-infrared spectral features in the range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989).
[CrossRef]

Appl. Phys. Lett. (6)

H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009).
[CrossRef]

X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010).
[CrossRef]

S. Sree Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94, 09118 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

F. M. Al-Douseri, Y. Chen, and X.-C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

D. Steers, C. Gerrard, B. Hirst, W. Sibbett, and M. J. Padgett, “Gasoline analysis and brand identification using a static Fourier transform ultraviolet spectrometer,” J. Opt. A: Pure Appl. Opt. 1, 680–684 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989–1993 (2006).
[CrossRef]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Spectrochim. Acta A (1)

P. E. Flecher, W. T. Welch, S. Albin, and J. B. Cooper, “Determination of octane numbers and rapid vapor pressure in commercial gasoline using dispersive fiber-optic Raman spectroscopy,” Spectrochim. Acta A 53, 199–206 (1997).
[CrossRef]

Other (4)

M. H. Brooker and R. W. Berg, “Non-invasive spectroscopic on-line methods to measure industrial processes: a review,” presented at Green Industrial Applications of Ionic Liquids, a NATO Advanced Research Workshop, Crete, Greece, 12–16 April 2000.

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Thin substrates for enhanced metamaterial sensing applications,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI31.

Annual book of ASTM standards, ASTM, West Conshohocken, PA, 2000.

American Society for Testing and Materials, “Standard testing method for knock characteristics of motor fuels by the research method,” ASTM D2699 (ASTM, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Simulated frequency-dependent amplitude transmission of the SRR metamaterials with and without a 1 µm-thick dielectric film on different substrates: (a) silicon and (b) Mylar. Insets: (a) schematic of a SRR unit cell; (b) microscopic image of the flexible Mylar metamaterial.

Fig. 2.
Fig. 2.

Measured power absorption coefficients and refractive indices of gasoline samples (#87 and #89) using THz-TDS.

Fig. 3.
Fig. 3.

Time-domain measurements of the transmitted terahertz pulses associated to the response of membrane metamaterials for different gasoline samples. Inset: blowup of detailed oscillatory pattern of the terahertz pulses.

Fig. 4.
Fig. 4.

(a) Measured LC response in different octane grades of gasoline; (b) blowup of detailed resonance shift and modification in transmission amplitude.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t˜(ω)=t12t21exp(ikL)exp(αL/2)1+r12r21exp(αL)exp(i2kL),
SRI=δfδn,

Metrics