Abstract

The absorptive and scattering optical properties of heat-treated, vapor-grown, graphite microtubes consisting of nanotubes in a “stacked cone” configuration were investigated through the visible and infrared wavelengths using photoacoustic and other spectrometric techniques. However, computations of these properties involved uncertainties that were not easily resolved; the appropriate dielectric coefficients were presumed to be a combination of the published values for the distinct orientations of graphite, but the correct proportions are not evident and none of the reasonable choices produced satisfactory agreement (within the measurement limits of error). Since both of the primary components of the extinction were measured, the appropriate computational codes were employed in reverse to compute the dielectric coefficients for the graphite microtubes. Differences, primarily for the imaginary index, are most distinct for visible and near infrared wavelengths; in this wavelength region, the imaginary index falls progressively to less than half that for the computed mixture.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Darmstadt, C. Roy, S. Kaliaguine, J.-M. Ting, and R. L. Alig, “Surface spectroscopic analysis of vapor grown carbon fibres prepared under various conditions,” Carbon 36, 1183–1190 (1998).
    [CrossRef]
  2. K. Osawa, T. Nakazawa, K. Oshida, M. Endo, and M. S. Dresselhaus, “Relation between heat-treatment temperature and characteristics of polyparaphenylene(PPP)-based carbon materials for lithium ion secondary batteries,” Proc. MRS Fall Meeting 2001699, R7.5 (2002).
    [CrossRef]
  3. M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
    [CrossRef]
  4. J. Y. Howe, G. G. Tibbetts, C. Kwag, and M. L. Lake, “Heat treating carbon nanofibers for optimal composite performance,” J. Mater. Res. 21, 2646–2652 (2006).
    [CrossRef]
  5. G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Compos. Sci. Technol. 67, 1709–1718 (2007).
    [CrossRef]
  6. D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
    [CrossRef]
  7. S. Alyones, C. W. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 55, 1856–1861 (2007).
    [CrossRef]
  8. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
    [CrossRef]
  9. M. I. Mishchenko, L. D. Travis, and A. A. Lasis, Scattering Absorption and Emission of Light by Small Particles, chap. 5 (Cambridge University, 2002).
  10. S. Alyones and C. W. Bruce, “Electromagnetic scattering by finite conducting fiber: limitation of a previous published code,” J. Electromagn. Waves. Appl. 25, 1021–1030 (2011).
    [CrossRef]
  11. C. W. Bruce and S. Alyones, “Extinction efficiencies for metallic fibers in the infrared,” Appl. Opt. 48, 5095–5098 (2009).
    [CrossRef]
  12. C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648–6655 (2004).
    [CrossRef]
  13. K. P. Gurton and C. W. Bruce, “Parametric study of the absorption cross section for a moderately conducting thin cylinder,” Appl. Opt. 34, 2822–2828 (1995).
    [CrossRef]
  14. K. P. Gurton and C. W. Bruce, “Measured backscatter from conductive thin films deposited on fibrous substrates,” IEEE Trans. Antennas Propag. 46, 1674–1677 (1998).
    [CrossRef]
  15. A. V. Jelinek and C. W. Bruce, “Extinction spectra of high conductivity fibrous aerosols,” J. Appl. Phys. 78, 2675–2678 (1995).
    [CrossRef]
  16. C. W. Bruce and R. G. Pinnick, “In-situ measurements of aerosol absorption with a resonant cw laser spectrophone,” Appl. Opt. 17, 1762–1765 (1977).
    [CrossRef]
  17. D. M. Roessler, F. R. Faxvog, R. Stevenson, and G. W. Smith, “Optical properties and morphology of particulate carbon variations with air/fuel ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla and G. W. Smith, ed. (Plenum, 1981).
  18. C. W. Bruce, Y. P. Yee, and S. G. Jennings, “In situ ratio of the aerosol absorption to extinction coefficient,” Appl. Opt. 12, 1893–1894 (1980).
    [CrossRef]
  19. C. W. Bruce, D. Kalinowski, and D. R. Ashmore, “Absorption and scattering properties of dust clouds at 10.5 um,” Aerosol Sci. Technol. 12, 1031–1036 (1990).
    [CrossRef]
  20. C. W. Bruce, T. F. Stromberg, K. P. Gurton, and J. B. Mozer, “Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot,” Appl. Opt. 30, 1537–1546 (1991).
    [CrossRef]
  21. R. A. Dobbins, G. W. Mulholland, and N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
    [CrossRef]
  22. Otto Edoh, “Optical properties of carbon from the far infrared to the far ultraviolet,” Ph.D. thesis, (University of Arizona, Tucson, 1987).Also in D. R. Huffman “Extinction measurements on aluminum and carbon smoke particles from far infrared to far ultraviolet,” DTIC number AD-A179 003.
  23. W. H. Dalzell and A. F. Sarofin, “Optical constants of soot and their applications to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969).
    [CrossRef]
  24. P. C. Waterman, “Scattering, absorption, and extinction by thin fibers,” J. Opt. Soc. Am. A 22, 2434–2441 (2005).
    [CrossRef]

2011

S. Alyones and C. W. Bruce, “Electromagnetic scattering by finite conducting fiber: limitation of a previous published code,” J. Electromagn. Waves. Appl. 25, 1021–1030 (2011).
[CrossRef]

2010

D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
[CrossRef]

2009

2007

S. Alyones, C. W. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 55, 1856–1861 (2007).
[CrossRef]

G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Compos. Sci. Technol. 67, 1709–1718 (2007).
[CrossRef]

2006

J. Y. Howe, G. G. Tibbetts, C. Kwag, and M. L. Lake, “Heat treating carbon nanofibers for optimal composite performance,” J. Mater. Res. 21, 2646–2652 (2006).
[CrossRef]

2005

P. C. Waterman, “Scattering, absorption, and extinction by thin fibers,” J. Opt. Soc. Am. A 22, 2434–2441 (2005).
[CrossRef]

2004

2003

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

1998

H. Darmstadt, C. Roy, S. Kaliaguine, J.-M. Ting, and R. L. Alig, “Surface spectroscopic analysis of vapor grown carbon fibres prepared under various conditions,” Carbon 36, 1183–1190 (1998).
[CrossRef]

K. P. Gurton and C. W. Bruce, “Measured backscatter from conductive thin films deposited on fibrous substrates,” IEEE Trans. Antennas Propag. 46, 1674–1677 (1998).
[CrossRef]

1996

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[CrossRef]

1995

A. V. Jelinek and C. W. Bruce, “Extinction spectra of high conductivity fibrous aerosols,” J. Appl. Phys. 78, 2675–2678 (1995).
[CrossRef]

K. P. Gurton and C. W. Bruce, “Parametric study of the absorption cross section for a moderately conducting thin cylinder,” Appl. Opt. 34, 2822–2828 (1995).
[CrossRef]

1994

R. A. Dobbins, G. W. Mulholland, and N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

1991

1990

C. W. Bruce, D. Kalinowski, and D. R. Ashmore, “Absorption and scattering properties of dust clouds at 10.5 um,” Aerosol Sci. Technol. 12, 1031–1036 (1990).
[CrossRef]

1980

C. W. Bruce, Y. P. Yee, and S. G. Jennings, “In situ ratio of the aerosol absorption to extinction coefficient,” Appl. Opt. 12, 1893–1894 (1980).
[CrossRef]

1977

C. W. Bruce and R. G. Pinnick, “In-situ measurements of aerosol absorption with a resonant cw laser spectrophone,” Appl. Opt. 17, 1762–1765 (1977).
[CrossRef]

1969

W. H. Dalzell and A. F. Sarofin, “Optical constants of soot and their applications to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Alig, R. L.

H. Darmstadt, C. Roy, S. Kaliaguine, J.-M. Ting, and R. L. Alig, “Surface spectroscopic analysis of vapor grown carbon fibres prepared under various conditions,” Carbon 36, 1183–1190 (1998).
[CrossRef]

Alyones, S.

S. Alyones and C. W. Bruce, “Electromagnetic scattering by finite conducting fiber: limitation of a previous published code,” J. Electromagn. Waves. Appl. 25, 1021–1030 (2011).
[CrossRef]

C. W. Bruce and S. Alyones, “Extinction efficiencies for metallic fibers in the infrared,” Appl. Opt. 48, 5095–5098 (2009).
[CrossRef]

S. Alyones, C. W. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 55, 1856–1861 (2007).
[CrossRef]

C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648–6655 (2004).
[CrossRef]

Ashmore, D. R.

C. W. Bruce, D. Kalinowski, and D. R. Ashmore, “Absorption and scattering properties of dust clouds at 10.5 um,” Aerosol Sci. Technol. 12, 1031–1036 (1990).
[CrossRef]

Bruce, C. W.

S. Alyones and C. W. Bruce, “Electromagnetic scattering by finite conducting fiber: limitation of a previous published code,” J. Electromagn. Waves. Appl. 25, 1021–1030 (2011).
[CrossRef]

C. W. Bruce and S. Alyones, “Extinction efficiencies for metallic fibers in the infrared,” Appl. Opt. 48, 5095–5098 (2009).
[CrossRef]

S. Alyones, C. W. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 55, 1856–1861 (2007).
[CrossRef]

C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648–6655 (2004).
[CrossRef]

K. P. Gurton and C. W. Bruce, “Measured backscatter from conductive thin films deposited on fibrous substrates,” IEEE Trans. Antennas Propag. 46, 1674–1677 (1998).
[CrossRef]

K. P. Gurton and C. W. Bruce, “Parametric study of the absorption cross section for a moderately conducting thin cylinder,” Appl. Opt. 34, 2822–2828 (1995).
[CrossRef]

A. V. Jelinek and C. W. Bruce, “Extinction spectra of high conductivity fibrous aerosols,” J. Appl. Phys. 78, 2675–2678 (1995).
[CrossRef]

C. W. Bruce, T. F. Stromberg, K. P. Gurton, and J. B. Mozer, “Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot,” Appl. Opt. 30, 1537–1546 (1991).
[CrossRef]

C. W. Bruce, D. Kalinowski, and D. R. Ashmore, “Absorption and scattering properties of dust clouds at 10.5 um,” Aerosol Sci. Technol. 12, 1031–1036 (1990).
[CrossRef]

C. W. Bruce, Y. P. Yee, and S. G. Jennings, “In situ ratio of the aerosol absorption to extinction coefficient,” Appl. Opt. 12, 1893–1894 (1980).
[CrossRef]

C. W. Bruce and R. G. Pinnick, “In-situ measurements of aerosol absorption with a resonant cw laser spectrophone,” Appl. Opt. 17, 1762–1765 (1977).
[CrossRef]

Bryner, N. P.

R. A. Dobbins, G. W. Mulholland, and N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

Buin, A.

S. Alyones, C. W. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 55, 1856–1861 (2007).
[CrossRef]

Dalzell, W. H.

W. H. Dalzell and A. F. Sarofin, “Optical constants of soot and their applications to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Darmstadt, H.

H. Darmstadt, C. Roy, S. Kaliaguine, J.-M. Ting, and R. L. Alig, “Surface spectroscopic analysis of vapor grown carbon fibres prepared under various conditions,” Carbon 36, 1183–1190 (1998).
[CrossRef]

Dobbins, R. A.

R. A. Dobbins, G. W. Mulholland, and N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

Dresselhaus, M. S.

D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
[CrossRef]

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

K. Osawa, T. Nakazawa, K. Oshida, M. Endo, and M. S. Dresselhaus, “Relation between heat-treatment temperature and characteristics of polyparaphenylene(PPP)-based carbon materials for lithium ion secondary batteries,” Proc. MRS Fall Meeting 2001699, R7.5 (2002).
[CrossRef]

Edoh, Otto

Otto Edoh, “Optical properties of carbon from the far infrared to the far ultraviolet,” Ph.D. thesis, (University of Arizona, Tucson, 1987).Also in D. R. Huffman “Extinction measurements on aluminum and carbon smoke particles from far infrared to far ultraviolet,” DTIC number AD-A179 003.

Endo, M.

D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
[CrossRef]

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

K. Osawa, T. Nakazawa, K. Oshida, M. Endo, and M. S. Dresselhaus, “Relation between heat-treatment temperature and characteristics of polyparaphenylene(PPP)-based carbon materials for lithium ion secondary batteries,” Proc. MRS Fall Meeting 2001699, R7.5 (2002).
[CrossRef]

Ezaka, M.

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

Faxvog, F. R.

D. M. Roessler, F. R. Faxvog, R. Stevenson, and G. W. Smith, “Optical properties and morphology of particulate carbon variations with air/fuel ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla and G. W. Smith, ed. (Plenum, 1981).

Fugisawa, K.

D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
[CrossRef]

Gurton, K. P.

Hayashi, T.

D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
[CrossRef]

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

Howe, J. Y.

J. Y. Howe, G. G. Tibbetts, C. Kwag, and M. L. Lake, “Heat treating carbon nanofibers for optimal composite performance,” J. Mater. Res. 21, 2646–2652 (2006).
[CrossRef]

Huffman, D. R.

Otto Edoh, “Optical properties of carbon from the far infrared to the far ultraviolet,” Ph.D. thesis, (University of Arizona, Tucson, 1987).Also in D. R. Huffman “Extinction measurements on aluminum and carbon smoke particles from far infrared to far ultraviolet,” DTIC number AD-A179 003.

Jelinek, A. V.

Jennings, S. G.

C. W. Bruce, Y. P. Yee, and S. G. Jennings, “In situ ratio of the aerosol absorption to extinction coefficient,” Appl. Opt. 12, 1893–1894 (1980).
[CrossRef]

Kaliaguine, S.

H. Darmstadt, C. Roy, S. Kaliaguine, J.-M. Ting, and R. L. Alig, “Surface spectroscopic analysis of vapor grown carbon fibres prepared under various conditions,” Carbon 36, 1183–1190 (1998).
[CrossRef]

Kalinowski, D.

C. W. Bruce, D. Kalinowski, and D. R. Ashmore, “Absorption and scattering properties of dust clouds at 10.5 um,” Aerosol Sci. Technol. 12, 1031–1036 (1990).
[CrossRef]

Kim, Y. A.

D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
[CrossRef]

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

Kwag, C.

J. Y. Howe, G. G. Tibbetts, C. Kwag, and M. L. Lake, “Heat treating carbon nanofibers for optimal composite performance,” J. Mater. Res. 21, 2646–2652 (2006).
[CrossRef]

Lake, M. L.

G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Compos. Sci. Technol. 67, 1709–1718 (2007).
[CrossRef]

J. Y. Howe, G. G. Tibbetts, C. Kwag, and M. L. Lake, “Heat treating carbon nanofibers for optimal composite performance,” J. Mater. Res. 21, 2646–2652 (2006).
[CrossRef]

Lasis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lasis, Scattering Absorption and Emission of Light by Small Particles, chap. 5 (Cambridge University, 2002).

Mackowski, D. W.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. A. Lasis, Scattering Absorption and Emission of Light by Small Particles, chap. 5 (Cambridge University, 2002).

Mozer, J. B.

Mulholland, G. W.

R. A. Dobbins, G. W. Mulholland, and N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

Muramatsu, H.

D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
[CrossRef]

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

Nakazawa, T.

K. Osawa, T. Nakazawa, K. Oshida, M. Endo, and M. S. Dresselhaus, “Relation between heat-treatment temperature and characteristics of polyparaphenylene(PPP)-based carbon materials for lithium ion secondary batteries,” Proc. MRS Fall Meeting 2001699, R7.5 (2002).
[CrossRef]

Osawa, K.

K. Osawa, T. Nakazawa, K. Oshida, M. Endo, and M. S. Dresselhaus, “Relation between heat-treatment temperature and characteristics of polyparaphenylene(PPP)-based carbon materials for lithium ion secondary batteries,” Proc. MRS Fall Meeting 2001699, R7.5 (2002).
[CrossRef]

Oshida, K.

K. Osawa, T. Nakazawa, K. Oshida, M. Endo, and M. S. Dresselhaus, “Relation between heat-treatment temperature and characteristics of polyparaphenylene(PPP)-based carbon materials for lithium ion secondary batteries,” Proc. MRS Fall Meeting 2001699, R7.5 (2002).
[CrossRef]

Pinnick, R. G.

C. W. Bruce and R. G. Pinnick, “In-situ measurements of aerosol absorption with a resonant cw laser spectrophone,” Appl. Opt. 17, 1762–1765 (1977).
[CrossRef]

Rice, B. P.

G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Compos. Sci. Technol. 67, 1709–1718 (2007).
[CrossRef]

Roessler, D. M.

D. M. Roessler, F. R. Faxvog, R. Stevenson, and G. W. Smith, “Optical properties and morphology of particulate carbon variations with air/fuel ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla and G. W. Smith, ed. (Plenum, 1981).

Roy, C.

H. Darmstadt, C. Roy, S. Kaliaguine, J.-M. Ting, and R. L. Alig, “Surface spectroscopic analysis of vapor grown carbon fibres prepared under various conditions,” Carbon 36, 1183–1190 (1998).
[CrossRef]

Sarofin, A. F.

W. H. Dalzell and A. F. Sarofin, “Optical constants of soot and their applications to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Shimamoto, D.

D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
[CrossRef]

Smith, G. W.

D. M. Roessler, F. R. Faxvog, R. Stevenson, and G. W. Smith, “Optical properties and morphology of particulate carbon variations with air/fuel ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla and G. W. Smith, ed. (Plenum, 1981).

Stevenson, R.

D. M. Roessler, F. R. Faxvog, R. Stevenson, and G. W. Smith, “Optical properties and morphology of particulate carbon variations with air/fuel ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla and G. W. Smith, ed. (Plenum, 1981).

Stromberg, T. F.

Strong, K. L.

G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Compos. Sci. Technol. 67, 1709–1718 (2007).
[CrossRef]

Terrones, H.

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

Terrones, M.

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

Tibbetts, G. G.

G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Compos. Sci. Technol. 67, 1709–1718 (2007).
[CrossRef]

J. Y. Howe, G. G. Tibbetts, C. Kwag, and M. L. Lake, “Heat treating carbon nanofibers for optimal composite performance,” J. Mater. Res. 21, 2646–2652 (2006).
[CrossRef]

Ting, J.-M.

H. Darmstadt, C. Roy, S. Kaliaguine, J.-M. Ting, and R. L. Alig, “Surface spectroscopic analysis of vapor grown carbon fibres prepared under various conditions,” Carbon 36, 1183–1190 (1998).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. A. Lasis, Scattering Absorption and Emission of Light by Small Particles, chap. 5 (Cambridge University, 2002).

Wang, Q.

Waterman, P. C.

P. C. Waterman, “Scattering, absorption, and extinction by thin fibers,” J. Opt. Soc. Am. A 22, 2434–2441 (2005).
[CrossRef]

Wu, S.

Yanagisaia, T.

D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
[CrossRef]

Yanagisawa, T.

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

Yee, Y. P.

C. W. Bruce, Y. P. Yee, and S. G. Jennings, “In situ ratio of the aerosol absorption to extinction coefficient,” Appl. Opt. 12, 1893–1894 (1980).
[CrossRef]

Aerosol Sci. Technol.

C. W. Bruce, D. Kalinowski, and D. R. Ashmore, “Absorption and scattering properties of dust clouds at 10.5 um,” Aerosol Sci. Technol. 12, 1031–1036 (1990).
[CrossRef]

Appl. Opt.

Atmos. Environ.

R. A. Dobbins, G. W. Mulholland, and N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

Carbon

H. Darmstadt, C. Roy, S. Kaliaguine, J.-M. Ting, and R. L. Alig, “Surface spectroscopic analysis of vapor grown carbon fibres prepared under various conditions,” Carbon 36, 1183–1190 (1998).
[CrossRef]

M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones, and M. S. Dresselhaus, “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon 41, 1941–1947 (2003).
[CrossRef]

D. Shimamoto, K. Fugisawa, H. Muramatsu, T. Hayashi, Y. A. Kim, T. Yanagisaia, M. Endo, and M. S. Dresselhaus, “A simple route to short cup-stacked carbon nanotubes by sonication,” Carbon 48, 3635–3658 (2010).
[CrossRef]

Compos. Sci. Technol.

G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Compos. Sci. Technol. 67, 1709–1718 (2007).
[CrossRef]

IEEE Trans. Antennas Propag.

K. P. Gurton and C. W. Bruce, “Measured backscatter from conductive thin films deposited on fibrous substrates,” IEEE Trans. Antennas Propag. 46, 1674–1677 (1998).
[CrossRef]

S. Alyones, C. W. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 55, 1856–1861 (2007).
[CrossRef]

J. Appl. Phys.

A. V. Jelinek and C. W. Bruce, “Extinction spectra of high conductivity fibrous aerosols,” J. Appl. Phys. 78, 2675–2678 (1995).
[CrossRef]

J. Electromagn. Waves. Appl.

S. Alyones and C. W. Bruce, “Electromagnetic scattering by finite conducting fiber: limitation of a previous published code,” J. Electromagn. Waves. Appl. 25, 1021–1030 (2011).
[CrossRef]

J. Heat Transfer

W. H. Dalzell and A. F. Sarofin, “Optical constants of soot and their applications to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

J. Mater. Res.

J. Y. Howe, G. G. Tibbetts, C. Kwag, and M. L. Lake, “Heat treating carbon nanofibers for optimal composite performance,” J. Mater. Res. 21, 2646–2652 (2006).
[CrossRef]

J. Opt. Soc. Am. A

P. C. Waterman, “Scattering, absorption, and extinction by thin fibers,” J. Opt. Soc. Am. A 22, 2434–2441 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
[CrossRef]

Other

M. I. Mishchenko, L. D. Travis, and A. A. Lasis, Scattering Absorption and Emission of Light by Small Particles, chap. 5 (Cambridge University, 2002).

K. Osawa, T. Nakazawa, K. Oshida, M. Endo, and M. S. Dresselhaus, “Relation between heat-treatment temperature and characteristics of polyparaphenylene(PPP)-based carbon materials for lithium ion secondary batteries,” Proc. MRS Fall Meeting 2001699, R7.5 (2002).
[CrossRef]

D. M. Roessler, F. R. Faxvog, R. Stevenson, and G. W. Smith, “Optical properties and morphology of particulate carbon variations with air/fuel ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla and G. W. Smith, ed. (Plenum, 1981).

Otto Edoh, “Optical properties of carbon from the far infrared to the far ultraviolet,” Ph.D. thesis, (University of Arizona, Tucson, 1987).Also in D. R. Huffman “Extinction measurements on aluminum and carbon smoke particles from far infrared to far ultraviolet,” DTIC number AD-A179 003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Photoacoustic system with small aerosol chamber attached. A nephelometer monitors aerosol density during injection and mixing in the chamber. Between the chamber and the PA cell, a small turbulence generator mixes the volume of flow. Lasers are past the extreme right.

Fig. 2.
Fig. 2.

Liquid photoacoustic system (foreground). The diode-pumped laser, neutral density filters, beam modulator, and reference detector are to the left. The attenuated power detector (calorimeter) is to the right.

Fig. 3.
Fig. 3.

Flow chart for FTIR-based measurements of infrared extinction.

Fig. 4.
Fig. 4.

Extinction and absorption efficiencies at 0.55 and 10 μm wavelengths for graphite heat-treated microtubes with inner diameter 90 nm and outer diameter 130 nm.

Fig. 5.
Fig. 5.

Infrared spectrum for heat-treated graphite measured using an in situ flowthrough cell.

Fig. 6.
Fig. 6.

Four independent sets of absorption efficiency measurements using the 2D (filter substrate) photoacoustic system.

Fig. 7.
Fig. 7.

Measured extinction and absorption efficiency data combined with fitted forms.

Fig. 8.
Fig. 8.

Real and imaginary index of refraction for length distribution of graphite fibers in visible and infrared regions. In this presentation all fibers are aligned with the E-field.

Fig. 9.
Fig. 9.

Randomization factor as a function of aspect ratio h/a of solid graphite fibers for different values of the size parameter ka.

Fig. 10.
Fig. 10.

Length distribution for the graphite heat-treated microtube sample.

Fig. 11.
Fig. 11.

Extinction and absorption cross sections per unit mass as a function of wavelength for measurements and calculations using the computed effective indices.

Fig. 12.
Fig. 12.

Real and imaginary index of refraction of the graphite microtubes that fit the extinction and absorption experimental data, as well as those for (a) the orientational mixture of graphite, (b) soot, and (c) glassy carbon.

Fig. 13.
Fig. 13.

Extinction and absorption cross sections per unit mass versus wavelength; measurements and calculations using the new representative indices of Fig. 12.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϵ=(ϵp000ϵp000ϵ11),
ϵ=(1000cos(27°)sin(27°)0sin(27°)cos(27°))·(ϵp000ϵp000ϵ11)·(1000cos(27°)sin(27°)0sin(27°)cos(27°))T=(ϵp000ϵp(cos(27°))2+ϵ11(sin(27°))2sin(27°)cos(27°)(ϵpϵ11)0sin(27°)cos(27°)(ϵpϵ11)ϵ11(cos(27°))2+ϵp(sin(27°))2).
εe=ϵp(cos(27°))2+ϵ11(sin(27°))2.

Metrics