Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Visible and infrared optical properties of stacked cone graphite microtubes

Not Accessible

Your library or personal account may give you access

Abstract

The absorptive and scattering optical properties of heat-treated, vapor-grown, graphite microtubes consisting of nanotubes in a “stacked cone” configuration were investigated through the visible and infrared wavelengths using photoacoustic and other spectrometric techniques. However, computations of these properties involved uncertainties that were not easily resolved; the appropriate dielectric coefficients were presumed to be a combination of the published values for the distinct orientations of graphite, but the correct proportions are not evident and none of the reasonable choices produced satisfactory agreement (within the measurement limits of error). Since both of the primary components of the extinction were measured, the appropriate computational codes were employed in reverse to compute the dielectric coefficients for the graphite microtubes. Differences, primarily for the imaginary index, are most distinct for visible and near infrared wavelengths; in this wavelength region, the imaginary index falls progressively to less than half that for the computed mixture.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot

Charles W. Bruce, Thor F. Stromberg, Kristan P. Gurton, and J. B. Mozer
Appl. Opt. 30(12) 1537-1546 (1991)

Wavelength-dependent optical extinction of carbonaceous particles in atmospheric aerosols and interstellar dust

Michael Quinten, Uwe Kreibig, Thomas Henning, and Harald Mutschke
Appl. Opt. 41(33) 7102-7113 (2002)

Carbon and the optical properties of atmospheric dust

James D. Lindberg, Rex. E. Douglass, and Dennis M. Garvey
Appl. Opt. 32(30) 6077-6081 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved