Abstract

The proposed sensing device relies on the self-imaging effect that occurs in a pure silica multimode fiber (coreless MMF) section of a single-mode–multimode–single-mode (SMS)-based fiber structure. The influence of the coreless-MMF diameter on the external refractive index (RI) variation permitted the sensing head with the lowest MMF diameter (i.e., 55 μm) to exhibit the maximum sensitivity (2800nm/RIU). This approach also implied an ultrahigh sensitivity of this fiber device to temperature variations in the liquid RI of 1.43: a maximum sensitivity of 1880pm/°C was indeed attained. Therefore, the results produced were over 100-fold those of the typical value of approximately 13pm/°C achieved in air using a similar device. Numerical analysis of an evanescent wave absorption sensor was performed, in order to extend the range of liquids with a detectable RI to above 1.43. The suggested model is an SMS fiber device where a polymer coating, with an RI as low as 1.3, is deposited over the coreless MMF; numerical results are presented pertaining to several polymer thicknesses in terms of external RI variation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
    [CrossRef]
  2. Q. Wang and G. Farrell, “Multimode-fiber-based edge filter for optical wavelength measurement application,” Microw. Opt. Technol. Lett. 48, 900–902 (2006).
    [CrossRef]
  3. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
    [CrossRef]
  4. A. M. Hatta, Y. Semenova, Q. Wu, and G. Farrell, “Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme,” Appl. Opt. 49, 536–541 (2010).
    [CrossRef]
  5. S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
    [CrossRef]
  6. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  7. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006).
    [CrossRef]
  8. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. L. Wa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35, 324–326 (2010).
    [CrossRef]
  9. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. L. Wa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36, 3425–3427 (2011).
    [CrossRef]
  10. Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
    [CrossRef]
  11. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer—analysis and experiment,” Opt. Express 19, 7937–7944 (2011).
    [CrossRef]
  12. J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic temperature sensor based on multimode interference effects,” J. Phys. 274, 012011 (2011).
    [CrossRef]
  13. Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode-singlemode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
    [CrossRef]
  14. W. S. Mohammed, P. W. E. Smith, and X. Gu, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
    [CrossRef]
  15. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
    [CrossRef]
  16. G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D 11, 1167–1172 (1978).
    [CrossRef]
  17. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature and composition,” Appl. Opt. 6, 51–59 (1967).
    [CrossRef]
  18. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley, 2001), Chap. 5, pp. 165–230.
  19. S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core, air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854, (2011).
    [CrossRef]
  20. S. T. Lee, J. Gin, V. P. N. Nampoori, C. P. G. Vallabhan, N. V. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings,” J. Opt. A 3, 355–359 (2001).
    [CrossRef]

2011 (7)

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
[CrossRef]

J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic temperature sensor based on multimode interference effects,” J. Phys. 274, 012011 (2011).
[CrossRef]

S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core, air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854, (2011).
[CrossRef]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer—analysis and experiment,” Opt. Express 19, 7937–7944 (2011).
[CrossRef]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
[CrossRef]

J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. L. Wa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36, 3425–3427 (2011).
[CrossRef]

2010 (2)

2008 (1)

2006 (2)

W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006).
[CrossRef]

Q. Wang and G. Farrell, “Multimode-fiber-based edge filter for optical wavelength measurement application,” Microw. Opt. Technol. Lett. 48, 900–902 (2006).
[CrossRef]

2004 (1)

2003 (2)

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

2001 (1)

S. T. Lee, J. Gin, V. P. N. Nampoori, C. P. G. Vallabhan, N. V. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings,” J. Opt. A 3, 355–359 (2001).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

1978 (1)

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D 11, 1167–1172 (1978).
[CrossRef]

1967 (1)

Abbate, G.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D 11, 1167–1172 (1978).
[CrossRef]

Aguilar-Soto, J. G.

J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic temperature sensor based on multimode interference effects,” J. Phys. 274, 012011 (2011).
[CrossRef]

Antonio-Lopez, J. E.

Antony, C. S.

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Araújo, F. M.

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

Bernini, U.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D 11, 1167–1172 (1978).
[CrossRef]

Brambilla, G.

Castillo-Guzman, A.

Ding, M.

Farrell, G.

Ferreira, L. A.

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

Frazão, O.

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core, air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854, (2011).
[CrossRef]

Gin, J.

S. T. Lee, J. Gin, V. P. N. Nampoori, C. P. G. Vallabhan, N. V. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings,” J. Opt. A 3, 355–359 (2001).
[CrossRef]

Gu, X.

Hatta, A. M.

Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
[CrossRef]

A. M. Hatta, Y. Semenova, Q. Wu, and G. Farrell, “Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme,” Appl. Opt. 49, 536–541 (2010).
[CrossRef]

Johnson, E. G.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

Kawano, K.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley, 2001), Chap. 5, pp. 165–230.

Kitoh, T.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley, 2001), Chap. 5, pp. 165–230.

Kobelke, J.

Kumar, A.

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Lee, S. T.

S. T. Lee, J. Gin, V. P. N. Nampoori, C. P. G. Vallabhan, N. V. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings,” J. Opt. A 3, 355–359 (2001).
[CrossRef]

Malcata, F. X.

S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core, air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854, (2011).
[CrossRef]

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

May-Arrioja, D. A.

Mehta, A.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

Mohammed, W. S.

Nampoori, V. P. N.

S. T. Lee, J. Gin, V. P. N. Nampoori, C. P. G. Vallabhan, N. V. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings,” J. Opt. A 3, 355–359 (2001).
[CrossRef]

Owens, J. C.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Radhakrishnan, P.

S. T. Lee, J. Gin, V. P. N. Nampoori, C. P. G. Vallabhan, N. V. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings,” J. Opt. A 3, 355–359 (2001).
[CrossRef]

Ragozzino, E.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D 11, 1167–1172 (1978).
[CrossRef]

Sanchez-Mondragon, J. J.

J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic temperature sensor based on multimode interference effects,” J. Phys. 274, 012011 (2011).
[CrossRef]

J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. L. Wa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36, 3425–3427 (2011).
[CrossRef]

Santos, J. L.

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core, air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854, (2011).
[CrossRef]

Schuster, K.

Selvas-Aguilar, R.

Semenova, Y.

Sharma, P.

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Silva, S.

S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core, air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854, (2011).
[CrossRef]

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

Smith, P. W. E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Somma, F.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D 11, 1167–1172 (1978).
[CrossRef]

Unnikrishnan, N. V.

S. T. Lee, J. Gin, V. P. N. Nampoori, C. P. G. Vallabhan, N. V. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings,” J. Opt. A 3, 355–359 (2001).
[CrossRef]

Vallabhan, C. P. G.

S. T. Lee, J. Gin, V. P. N. Nampoori, C. P. G. Vallabhan, N. V. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings,” J. Opt. A 3, 355–359 (2001).
[CrossRef]

Varshney, R. K.

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Viegas, J.

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

Wa, P. L.

Wang, P.

Wang, Q.

Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode-singlemode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
[CrossRef]

Q. Wang and G. Farrell, “Multimode-fiber-based edge filter for optical wavelength measurement application,” Microw. Opt. Technol. Lett. 48, 900–902 (2006).
[CrossRef]

Wu, Q.

Yan, W.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. A (1)

S. T. Lee, J. Gin, V. P. N. Nampoori, C. P. G. Vallabhan, N. V. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings,” J. Opt. A 3, 355–359 (2001).
[CrossRef]

J. Phys. (1)

J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic temperature sensor based on multimode interference effects,” J. Phys. 274, 012011 (2011).
[CrossRef]

J. Phys. D (1)

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D 11, 1167–1172 (1978).
[CrossRef]

Meas. Sci. Technol. (2)

Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
[CrossRef]

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Q. Wang and G. Farrell, “Multimode-fiber-based edge filter for optical wavelength measurement application,” Microw. Opt. Technol. Lett. 48, 900–902 (2006).
[CrossRef]

Opt. Commun. (1)

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Other (1)

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley, 2001), Chap. 5, pp. 165–230.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup utilized and detail of the coreless-MMF-based SMS fiber structure.

Fig. 2.
Fig. 2.

Intensity distribution on the xz plane of the electric field at the 1550 nm wavelength for the SMS fiber structure with a coreless-MMF diameter of 55 μm, when exposed to external the RI of (a) 1.0, (b) 1.3, (c) 1.36, and (d) 1.42.

Fig. 3.
Fig. 3.

Experimental spectral response of the SMS fiber structures with different coreless-MMF diameters, namely, 55, 78, and 125 μm (SMS1, SMS2, and SMS3, respectively), to distinct RIs, namely, 1, 1.33, and 1.4.

Fig. 4.
Fig. 4.

Wavelength shift of fiber structures SMS1, SMS2, and SMS3 in response to RI variations as (a) numerical data and (b) experimental results.

Fig. 5.
Fig. 5.

Wavelength shift of sensing structure SMS1 to temperature variation, in the high-sensitivity RI range (1.42–1.43) using a liquid RI with a nominal value of 1.44 (20°C), as numerical data and experimental results.

Fig. 6.
Fig. 6.

(a) Intensity variation of SMS fiber structure with coreless-MMF diameter of 125 μm, and coated with 0.5, 0.75, 1, and 1.5 μm thick polymer layers, when submitted to external RI in the range (1.42–1.48) and (b) spectral changes of SMS fiber structure with coreless-MMF diameter of 125 μm, and coated with a 0.75 μm thick polymer layer, when submitted to external RI in the range (1.44–1.47).

Tables (1)

Tables Icon

Table 1. Sensitivity Coefficients for the Refractive Index

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Zi=4D2ncoreλ,

Metrics