Abstract

In this paper, we present a broadband wire grid polarizer with a spectral working range down to a wavelength of 193 nm. Tungsten is chosen as grating material because it provides a high extinction ratio and transmission compared with other common grating materials. The fabrication of the grating with 100 nm period was accomplished using a spatial frequency doubling approach based on ultrafast electron beam lithography and a sophisticated deposition technique. At a wavelength of 193 nm, a transmission of about 44% and an extinction ratio of 20 was measured.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Xu, H. P. Urbach, D. K. G. de Boer, and H. J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303–2320 (2005).
    [CrossRef]
  2. G. R. Bird and M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960).
    [CrossRef]
  3. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
    [CrossRef]
  4. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
    [CrossRef]
  5. B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
    [CrossRef]
  6. T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6, 558 (2011).
    [CrossRef]
  7. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
    [CrossRef]
  8. G. G. Kang, I. Vartiainen, B. F. Bai, H. Tuovinen, and J. Turunen, “Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band,” Appl. Phys. Lett. 99, 071103 (2011).
    [CrossRef]
  9. V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
    [CrossRef]
  10. Y.-R. Hong, K. Asakawa, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire grid polarizer for very deep ultraviolet fabricated from a shear-aligned diblock copolymer template,” Opt. Lett. 32, 3125–3127 (2007).
    [CrossRef]
  11. Z. Yang and Y. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15, 9510–9519 (2007).
    [CrossRef]
  12. T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36, 445–447 (2011).
    [CrossRef]
  13. T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
    [CrossRef]
  14. Grating Solver Development Co., http://www.gsolver.com .
  15. J. Weaver, C. Olson, and D. Lynch, “Optical properties of crystalline tungsten,” Phys. Rev. B 12, 1293 (1975).
    [CrossRef]
  16. G. Hass, G. Jacobus, and W. Hunter, “Optical properties of evaporated iridium in the vacuum ultraviolet from 500 angstroms to 2000 angstroms,” J. Opt. Soc. Am. 57, 758–760(1967).
    [CrossRef]
  17. W. Hunter, “Optical constants of metals in the extreme ultraviolet. II. Optical constants of aluminum, magnesium, and indium at wavelengths shorter than their critical wavelengths,” J. Opt. Soc. Am. 54, 208–211 (1964).
    [CrossRef]
  18. A. Lehmuskero, M. Kuittinen, and P. Vahimaa, “Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness,” Opt. Express 15, 10744–10752 (2007).
    [CrossRef]
  19. D. Lehr, K. Dietrich, C. Helgert, T. Käsebier, H.-J. Fuchs, A. Tünnermann, and E.-B. Kley, “Plasmonic properties of aluminum nanorings generated by double patterning,” Opt. Lett. 37, 157–159 (2012).
    [CrossRef]

2012

2011

T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36, 445–447 (2011).
[CrossRef]

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6, 558 (2011).
[CrossRef]

G. G. Kang, I. Vartiainen, B. F. Bai, H. Tuovinen, and J. Turunen, “Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band,” Appl. Phys. Lett. 99, 071103 (2011).
[CrossRef]

2009

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

2007

2006

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

2005

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

M. Xu, H. P. Urbach, D. K. G. de Boer, and H. J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303–2320 (2005).
[CrossRef]

1999

B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

1975

J. Weaver, C. Olson, and D. Lynch, “Optical properties of crystalline tungsten,” Phys. Rev. B 12, 1293 (1975).
[CrossRef]

1967

1964

1960

Adamson, D. H.

Y.-R. Hong, K. Asakawa, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire grid polarizer for very deep ultraviolet fabricated from a shear-aligned diblock copolymer template,” Opt. Lett. 32, 3125–3127 (2007).
[CrossRef]

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Ahn, S. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Asakawa, K.

Y.-R. Hong, K. Asakawa, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire grid polarizer for very deep ultraviolet fabricated from a shear-aligned diblock copolymer template,” Opt. Lett. 32, 3125–3127 (2007).
[CrossRef]

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Bai, B. F.

G. G. Kang, I. Vartiainen, B. F. Bai, H. Tuovinen, and J. Turunen, “Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band,” Appl. Phys. Lett. 99, 071103 (2011).
[CrossRef]

Bird, G. R.

Chaikin, P. M.

Y.-R. Hong, K. Asakawa, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire grid polarizer for very deep ultraviolet fabricated from a shear-aligned diblock copolymer template,” Opt. Lett. 32, 3125–3127 (2007).
[CrossRef]

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Chen, L.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Cornelissen, H. J.

de Boer, D. K. G.

Deng, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Dietrich, K.

Fuchs, H.-J.

D. Lehr, K. Dietrich, C. Helgert, T. Käsebier, H.-J. Fuchs, A. Tünnermann, and E.-B. Kley, “Plasmonic properties of aluminum nanorings generated by double patterning,” Opt. Lett. 37, 157–159 (2012).
[CrossRef]

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Hass, G.

Helgert, C.

Hong, Y.-R.

Hunter, W.

Jacobus, G.

Kang, G. G.

G. G. Kang, I. Vartiainen, B. F. Bai, H. Tuovinen, and J. Turunen, “Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band,” Appl. Phys. Lett. 99, 071103 (2011).
[CrossRef]

Käsebier, T.

Kim, J. S.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Kim, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Kley, E.-B.

D. Lehr, K. Dietrich, C. Helgert, T. Käsebier, H.-J. Fuchs, A. Tünnermann, and E.-B. Kley, “Plasmonic properties of aluminum nanorings generated by double patterning,” Opt. Lett. 37, 157–159 (2012).
[CrossRef]

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6, 558 (2011).
[CrossRef]

T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36, 445–447 (2011).
[CrossRef]

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Knez, M.

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6, 558 (2011).
[CrossRef]

Kuittinen, M.

Lee, K. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Lee, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Lehmuskero, A.

Lehr, D.

Liu, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Liu, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Lu, Y.

Lynch, D.

J. Weaver, C. Olson, and D. Lynch, “Optical properties of crystalline tungsten,” Phys. Rev. B 12, 1293 (1975).
[CrossRef]

Olson, C.

J. Weaver, C. Olson, and D. Lynch, “Optical properties of crystalline tungsten,” Phys. Rev. B 12, 1293 (1975).
[CrossRef]

Park, J. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Parrish, M.

Pelletier, V.

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Register, R. A.

Y.-R. Hong, K. Asakawa, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire grid polarizer for very deep ultraviolet fabricated from a shear-aligned diblock copolymer template,” Opt. Lett. 32, 3125–3127 (2007).
[CrossRef]

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Schmidt, H.

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Schnabel, B.

B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Sciortino, P.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Szeghalmi, A.

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6, 558 (2011).
[CrossRef]

Tünnermann, A.

D. Lehr, K. Dietrich, C. Helgert, T. Käsebier, H.-J. Fuchs, A. Tünnermann, and E.-B. Kley, “Plasmonic properties of aluminum nanorings generated by double patterning,” Opt. Lett. 37, 157–159 (2012).
[CrossRef]

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6, 558 (2011).
[CrossRef]

T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36, 445–447 (2011).
[CrossRef]

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Tuovinen, H.

G. G. Kang, I. Vartiainen, B. F. Bai, H. Tuovinen, and J. Turunen, “Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band,” Appl. Phys. Lett. 99, 071103 (2011).
[CrossRef]

Turunen, J.

G. G. Kang, I. Vartiainen, B. F. Bai, H. Tuovinen, and J. Turunen, “Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band,” Appl. Phys. Lett. 99, 071103 (2011).
[CrossRef]

Urbach, H. P.

Vahimaa, P.

Vartiainen, I.

G. G. Kang, I. Vartiainen, B. F. Bai, H. Tuovinen, and J. Turunen, “Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band,” Appl. Phys. Lett. 99, 071103 (2011).
[CrossRef]

Walters, F.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Wang, J. J.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Weaver, J.

J. Weaver, C. Olson, and D. Lynch, “Optical properties of crystalline tungsten,” Phys. Rev. B 12, 1293 (1975).
[CrossRef]

Weber, T.

T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36, 445–447 (2011).
[CrossRef]

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6, 558 (2011).
[CrossRef]

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Wu, M.

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

Wyrowski, F.

B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Xu, M.

Yang, Z.

Yoon, P. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Appl. Phys. Lett.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

G. G. Kang, I. Vartiainen, B. F. Bai, H. Tuovinen, and J. Turunen, “Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band,” Appl. Phys. Lett. 99, 071103 (2011).
[CrossRef]

V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006).
[CrossRef]

J. Opt. Soc. Am.

Nanoscale Res. Lett.

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6, 558 (2011).
[CrossRef]

Nanotechnology

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Opt. Eng.

B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. Weaver, C. Olson, and D. Lynch, “Optical properties of crystalline tungsten,” Phys. Rev. B 12, 1293 (1975).
[CrossRef]

Proc. SPIE

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Other

Grating Solver Development Co., http://www.gsolver.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Plot of the calculated (a) transmission and (b) extinction ratio for wire grid polarizer with the materials aluminum, iridium, and tungsten in the DUV spectral range.

Fig. 2.
Fig. 2.

Amplitude of the rigorous calculated near field distribution of the electrical field for TE polarization of an (a) aluminum, (b) iridium, and (c) tungsten wire grid polarizer at a wavelength of 193 nm.

Fig. 3.
Fig. 3.

Cross section SEM image of the fabricated tungsten wire grid polarizer. The cross section was prepared using focused ion beam technology.

Fig. 4.
Fig. 4.

Measured transmission and extinction ratio of the fabricated element.

Metrics