Abstract

We develop a technique to analyze pulsed thermography videos in order to detect and reconstruct subsurface defects in homogeneous and layered objects. The technique is based on the analysis of the thermal response of an object to a heat pulse. This thermal response is compared to the predictions of a finite-difference model that is systematically and progressively adjusted to minimize a cost function. With this minimization process, we obtain a depth and a thickness function that allow us to determine the three-dimensional shape, size, depth, thickness, and location of internal defects. The detected defects are reliably reconstructed with graphics of easy interpretation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Speka, S. Mattei, M. Pilloz, and M. Ilie, “The infrared thermography control of the laser welding of amorphous polymers,” NDT & E Int. 41, 178–183 (2008).
    [CrossRef]
  2. E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
    [CrossRef]
  3. C. Zoecke, A. Langmeier, and W. Arnold, “Size retrieval of defects in composite material with lockin thermography,” J. Phys. USSR 214, 012093 (2010).
    [CrossRef]
  4. M. Strojnik and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007).
    [CrossRef]
  5. S. Lugin and U. Netzelmann, “A defect shape reconstruction algorithm for pulsed thermography,” NDT & E Int. 40, 220–228 (2007).
    [CrossRef]
  6. M. Omar, M. I. Hassan, K. Saito, and R. Alloo, “IR self-referencing thermography for detection of in-depth defects,” Infrared Phys. Technol. 46, 283–289 (2005).
    [CrossRef]
  7. G. Busse, D. Wu, and W. Karpen, “Thermal wave imaging with phase sensitive modulated thermography,” J. Appl. Phys. 71, 3962–3965 (1992).
    [CrossRef]
  8. P. Cielo, “Pulsed photothermal evaluation of layered materials,” J. Appl. Phys. 56, 230–234 (1984).
    [CrossRef]
  9. X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley-Interscience, 2001).
  10. Y. Zheng-Wei, Z. Wei, T. Gan, L. Ren-Bing, and S. Yuan-Jia, “Multi-pulse infrared thermography applied to improve defect detectability of composites,” Appl. Mechanics Mat. 58–60, 463–468 (2011).
    [CrossRef]
  11. C. Dapeng, W. Naiming, Z. Zheng, L. Yue, L. Xiaoxia, and Z. Cunlin, “Detection of impact damages in CFRP composites using ultrasonic burst phase thermography,” Mater. Sci. Forum 689, 282–288 (2011).
    [CrossRef]
  12. G. Riegert, T. Zweschper, and G. Busse, “Lock-in thermography with eddy current excitation,” Quant. Infrared Thermogr. J. 1, 21–32 (2004).
  13. M. S. Scholl, “Target temperature distribution generated and maintained by a scanning laser beam,” Appl. Opt. 21, 2146–2152 (1982).
    [CrossRef]
  14. G. Paez and M. Strojnik, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 46, 141–145 (2004).
    [CrossRef]
  15. M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermogr. J. 3, 219–230 (2006).
    [CrossRef]
  16. S. M. Shepard, J. R. Lhota, B. A. Rubadeux, T. Ahmed, and D. Wang, “Enhancement and reconstruction of thermographic data,” Proc. SPIE 4710, 531–535 (2002).
    [CrossRef]
  17. D. A. Gonzalez, C. Ibarra-Castanedo, J. M. Lopez-Higuera, and X. Maldague, “New algorithm based on the Hough transform for the analysis of pulsed thermographic sequences,” NDT & E Int. 39, 617–621 (2006).
    [CrossRef]
  18. X. Maldague and S. Marinetti, “Pulse phase infrared thermography,” J. Appl. Phys. 79, 2694–2698 (1996).
    [CrossRef]
  19. T. D’Orazio, C. Guaragnella, M. Leo, and P. Spagnolo, “Defect detection in aircraft composites by using a neural approach in the analysis of thermographic sequences,” NDT & E Int. 38, 665–673 (2005).
    [CrossRef]
  20. V. Vavilov, D. Nesteruk, V. Shirayev, and A. Ivanov, “Some novel approaches to thermal tomography of CFRP composites,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 433–440.
  21. D. L. Balageas, “Thickness or diffusivity measurements from front-face flash experiments using the TSR (thermographic signal reconstruction) approach,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 873–880.
  22. X. P. Maldague and P. O. Moore, “Infrared and thermal testing,” in Nondestructive Testing Handbook (ASNT, 2001), Vol. 3.
  23. G. Manduchi, S. Marinetti, P. Bison, and E. Grinzato, “Application of neural network computing to thermal non-destructive evaluation,” Neural Comput. Applic. 6, 148–157(1997).
    [CrossRef]
  24. V. P. Vavilov, D. G. Kourtenkov, E. Grinzato, P. G. Bison, S. Marinetti, and C. Bressan, “Inversion of experimental data and thermal tomography using Termo.Heat and Termidge software,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 273–280.
  25. A. Degiovanni, A. Bendada, J. C. Betsale, and D. Maillet, “Analytical simulation of a multi-dimensional field produced by planar defects of any shape; application to nondestructive testing,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 253–259.
  26. V. Vavilov, X. Maldague, J. Picard, R. L. Thomas, and L. D. Favro, “Dynamic thermal tomography: new NDE technique to reconstruct inner solids structure by using multiple IR image processing,” in Review of Progress in Quantitative Nondestructive Evaluation, Proceedings of the 18th Annual Review, Vol. 11A, D. O. Thompson and D. E. Chimenti, eds. (Plenum, 1992), pp. 425–432.
  27. A. Bendada, D. Maillet, and A. Degiovanni, “Nondestructive transient thermal evaluation of laminated composites: discrimination between delaminations thickness variations and multidelaminations,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 218–223.
  28. J. C. Ramirez-Granados, G. Paez, and M. Strojnik, “Reconstruction and analysis of pulsed thermographic sequences for nondestructive testing of layered materials,” Appl. Opt. 49, 1494–1502 (2010).
    [CrossRef]
  29. Z. Alsaadawi and U. Netzelmann, “Spatio-temporal filtering of active thermography data for noise reduction and data compression,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 383–390.
  30. S. Lugin and U. Netzelmann, “An effective compression algorithm for pulsed thermography data,” NDT & E Int. 38, 485–490 (2005).
    [CrossRef]
  31. P. G. Berardi and G. Cuccurullo, “Data reduction in flash method thermography,” in Proceedings of the 5th International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 64, D. Balageas, J. L. Beaudoin, G. Busse, and G. M. Carlomagno, eds. (EETI, 2000), pp. 188–193.
  32. V. Vavilov, X. Maldague, B. Dufort, F. Robitaille, and J. Picard, “Thermal nondestructive testing of carbon epoxy composites: detailed analysis and data processing,” NDT & E Int. 26, 85–95 (1993).
    [CrossRef]
  33. V. Vavilov, P. G. Bison, C. Bressan, E. Grinzato, and S. Marinetti, “Some new ideas in dynamic thermal tomography,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 259–265.
  34. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2007).
  35. J. Schlichting, C. Maierhofer, and M. Kreutzbruck, “Defect sizing by local excitation thermography,” Quant. Infrared Thermogr. J. 8, 51–63 (2011).
    [CrossRef]
  36. M. B. Dufour, D. Derome, and R. Zmeureanu, “Analysis of thermograms for the estimation of dimensions of cracks in building envelope,” Infrared Phys. Technol. 52, 70–78 (2009).
    [CrossRef]

2011 (3)

Y. Zheng-Wei, Z. Wei, T. Gan, L. Ren-Bing, and S. Yuan-Jia, “Multi-pulse infrared thermography applied to improve defect detectability of composites,” Appl. Mechanics Mat. 58–60, 463–468 (2011).
[CrossRef]

C. Dapeng, W. Naiming, Z. Zheng, L. Yue, L. Xiaoxia, and Z. Cunlin, “Detection of impact damages in CFRP composites using ultrasonic burst phase thermography,” Mater. Sci. Forum 689, 282–288 (2011).
[CrossRef]

J. Schlichting, C. Maierhofer, and M. Kreutzbruck, “Defect sizing by local excitation thermography,” Quant. Infrared Thermogr. J. 8, 51–63 (2011).
[CrossRef]

2010 (2)

J. C. Ramirez-Granados, G. Paez, and M. Strojnik, “Reconstruction and analysis of pulsed thermographic sequences for nondestructive testing of layered materials,” Appl. Opt. 49, 1494–1502 (2010).
[CrossRef]

C. Zoecke, A. Langmeier, and W. Arnold, “Size retrieval of defects in composite material with lockin thermography,” J. Phys. USSR 214, 012093 (2010).
[CrossRef]

2009 (1)

M. B. Dufour, D. Derome, and R. Zmeureanu, “Analysis of thermograms for the estimation of dimensions of cracks in building envelope,” Infrared Phys. Technol. 52, 70–78 (2009).
[CrossRef]

2008 (1)

M. Speka, S. Mattei, M. Pilloz, and M. Ilie, “The infrared thermography control of the laser welding of amorphous polymers,” NDT & E Int. 41, 178–183 (2008).
[CrossRef]

2007 (3)

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

M. Strojnik and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007).
[CrossRef]

S. Lugin and U. Netzelmann, “A defect shape reconstruction algorithm for pulsed thermography,” NDT & E Int. 40, 220–228 (2007).
[CrossRef]

2006 (2)

M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermogr. J. 3, 219–230 (2006).
[CrossRef]

D. A. Gonzalez, C. Ibarra-Castanedo, J. M. Lopez-Higuera, and X. Maldague, “New algorithm based on the Hough transform for the analysis of pulsed thermographic sequences,” NDT & E Int. 39, 617–621 (2006).
[CrossRef]

2005 (3)

T. D’Orazio, C. Guaragnella, M. Leo, and P. Spagnolo, “Defect detection in aircraft composites by using a neural approach in the analysis of thermographic sequences,” NDT & E Int. 38, 665–673 (2005).
[CrossRef]

M. Omar, M. I. Hassan, K. Saito, and R. Alloo, “IR self-referencing thermography for detection of in-depth defects,” Infrared Phys. Technol. 46, 283–289 (2005).
[CrossRef]

S. Lugin and U. Netzelmann, “An effective compression algorithm for pulsed thermography data,” NDT & E Int. 38, 485–490 (2005).
[CrossRef]

2004 (2)

G. Paez and M. Strojnik, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 46, 141–145 (2004).
[CrossRef]

G. Riegert, T. Zweschper, and G. Busse, “Lock-in thermography with eddy current excitation,” Quant. Infrared Thermogr. J. 1, 21–32 (2004).

2002 (1)

S. M. Shepard, J. R. Lhota, B. A. Rubadeux, T. Ahmed, and D. Wang, “Enhancement and reconstruction of thermographic data,” Proc. SPIE 4710, 531–535 (2002).
[CrossRef]

1997 (1)

G. Manduchi, S. Marinetti, P. Bison, and E. Grinzato, “Application of neural network computing to thermal non-destructive evaluation,” Neural Comput. Applic. 6, 148–157(1997).
[CrossRef]

1996 (1)

X. Maldague and S. Marinetti, “Pulse phase infrared thermography,” J. Appl. Phys. 79, 2694–2698 (1996).
[CrossRef]

1993 (1)

V. Vavilov, X. Maldague, B. Dufort, F. Robitaille, and J. Picard, “Thermal nondestructive testing of carbon epoxy composites: detailed analysis and data processing,” NDT & E Int. 26, 85–95 (1993).
[CrossRef]

1992 (1)

G. Busse, D. Wu, and W. Karpen, “Thermal wave imaging with phase sensitive modulated thermography,” J. Appl. Phys. 71, 3962–3965 (1992).
[CrossRef]

1984 (1)

P. Cielo, “Pulsed photothermal evaluation of layered materials,” J. Appl. Phys. 56, 230–234 (1984).
[CrossRef]

1982 (1)

Ahmed, T.

S. M. Shepard, J. R. Lhota, B. A. Rubadeux, T. Ahmed, and D. Wang, “Enhancement and reconstruction of thermographic data,” Proc. SPIE 4710, 531–535 (2002).
[CrossRef]

Alloo, R.

M. Omar, M. I. Hassan, K. Saito, and R. Alloo, “IR self-referencing thermography for detection of in-depth defects,” Infrared Phys. Technol. 46, 283–289 (2005).
[CrossRef]

Alsaadawi, Z.

Z. Alsaadawi and U. Netzelmann, “Spatio-temporal filtering of active thermography data for noise reduction and data compression,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 383–390.

Arnold, W.

C. Zoecke, A. Langmeier, and W. Arnold, “Size retrieval of defects in composite material with lockin thermography,” J. Phys. USSR 214, 012093 (2010).
[CrossRef]

Balageas, D. L.

D. L. Balageas, “Thickness or diffusivity measurements from front-face flash experiments using the TSR (thermographic signal reconstruction) approach,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 873–880.

Bendada, A.

A. Bendada, D. Maillet, and A. Degiovanni, “Nondestructive transient thermal evaluation of laminated composites: discrimination between delaminations thickness variations and multidelaminations,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 218–223.

A. Degiovanni, A. Bendada, J. C. Betsale, and D. Maillet, “Analytical simulation of a multi-dimensional field produced by planar defects of any shape; application to nondestructive testing,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 253–259.

Bendada, H.

M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermogr. J. 3, 219–230 (2006).
[CrossRef]

Benitez, H. D.

M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermogr. J. 3, 219–230 (2006).
[CrossRef]

Berardi, P. G.

P. G. Berardi and G. Cuccurullo, “Data reduction in flash method thermography,” in Proceedings of the 5th International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 64, D. Balageas, J. L. Beaudoin, G. Busse, and G. M. Carlomagno, eds. (EETI, 2000), pp. 188–193.

Bergman, T. L.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2007).

Betsale, J. C.

A. Degiovanni, A. Bendada, J. C. Betsale, and D. Maillet, “Analytical simulation of a multi-dimensional field produced by planar defects of any shape; application to nondestructive testing,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 253–259.

Bison, P.

G. Manduchi, S. Marinetti, P. Bison, and E. Grinzato, “Application of neural network computing to thermal non-destructive evaluation,” Neural Comput. Applic. 6, 148–157(1997).
[CrossRef]

Bison, P. G.

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

V. P. Vavilov, D. G. Kourtenkov, E. Grinzato, P. G. Bison, S. Marinetti, and C. Bressan, “Inversion of experimental data and thermal tomography using Termo.Heat and Termidge software,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 273–280.

V. Vavilov, P. G. Bison, C. Bressan, E. Grinzato, and S. Marinetti, “Some new ideas in dynamic thermal tomography,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 259–265.

Bressan, C.

V. Vavilov, P. G. Bison, C. Bressan, E. Grinzato, and S. Marinetti, “Some new ideas in dynamic thermal tomography,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 259–265.

V. P. Vavilov, D. G. Kourtenkov, E. Grinzato, P. G. Bison, S. Marinetti, and C. Bressan, “Inversion of experimental data and thermal tomography using Termo.Heat and Termidge software,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 273–280.

Busse, G.

G. Riegert, T. Zweschper, and G. Busse, “Lock-in thermography with eddy current excitation,” Quant. Infrared Thermogr. J. 1, 21–32 (2004).

G. Busse, D. Wu, and W. Karpen, “Thermal wave imaging with phase sensitive modulated thermography,” J. Appl. Phys. 71, 3962–3965 (1992).
[CrossRef]

Cielo, P.

P. Cielo, “Pulsed photothermal evaluation of layered materials,” J. Appl. Phys. 56, 230–234 (1984).
[CrossRef]

Cuccurullo, G.

P. G. Berardi and G. Cuccurullo, “Data reduction in flash method thermography,” in Proceedings of the 5th International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 64, D. Balageas, J. L. Beaudoin, G. Busse, and G. M. Carlomagno, eds. (EETI, 2000), pp. 188–193.

Cunlin, Z.

C. Dapeng, W. Naiming, Z. Zheng, L. Yue, L. Xiaoxia, and Z. Cunlin, “Detection of impact damages in CFRP composites using ultrasonic burst phase thermography,” Mater. Sci. Forum 689, 282–288 (2011).
[CrossRef]

D’Orazio, T.

T. D’Orazio, C. Guaragnella, M. Leo, and P. Spagnolo, “Defect detection in aircraft composites by using a neural approach in the analysis of thermographic sequences,” NDT & E Int. 38, 665–673 (2005).
[CrossRef]

Dapeng, C.

C. Dapeng, W. Naiming, Z. Zheng, L. Yue, L. Xiaoxia, and Z. Cunlin, “Detection of impact damages in CFRP composites using ultrasonic burst phase thermography,” Mater. Sci. Forum 689, 282–288 (2011).
[CrossRef]

Degiovanni, A.

A. Degiovanni, A. Bendada, J. C. Betsale, and D. Maillet, “Analytical simulation of a multi-dimensional field produced by planar defects of any shape; application to nondestructive testing,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 253–259.

A. Bendada, D. Maillet, and A. Degiovanni, “Nondestructive transient thermal evaluation of laminated composites: discrimination between delaminations thickness variations and multidelaminations,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 218–223.

Derome, D.

M. B. Dufour, D. Derome, and R. Zmeureanu, “Analysis of thermograms for the estimation of dimensions of cracks in building envelope,” Infrared Phys. Technol. 52, 70–78 (2009).
[CrossRef]

DeWitt, D. P.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2007).

Dufort, B.

V. Vavilov, X. Maldague, B. Dufort, F. Robitaille, and J. Picard, “Thermal nondestructive testing of carbon epoxy composites: detailed analysis and data processing,” NDT & E Int. 26, 85–95 (1993).
[CrossRef]

Dufour, M. B.

M. B. Dufour, D. Derome, and R. Zmeureanu, “Analysis of thermograms for the estimation of dimensions of cracks in building envelope,” Infrared Phys. Technol. 52, 70–78 (2009).
[CrossRef]

Favro, L. D.

V. Vavilov, X. Maldague, J. Picard, R. L. Thomas, and L. D. Favro, “Dynamic thermal tomography: new NDE technique to reconstruct inner solids structure by using multiple IR image processing,” in Review of Progress in Quantitative Nondestructive Evaluation, Proceedings of the 18th Annual Review, Vol. 11A, D. O. Thompson and D. E. Chimenti, eds. (Plenum, 1992), pp. 425–432.

Gan, T.

Y. Zheng-Wei, Z. Wei, T. Gan, L. Ren-Bing, and S. Yuan-Jia, “Multi-pulse infrared thermography applied to improve defect detectability of composites,” Appl. Mechanics Mat. 58–60, 463–468 (2011).
[CrossRef]

Gonzalez, D. A.

D. A. Gonzalez, C. Ibarra-Castanedo, J. M. Lopez-Higuera, and X. Maldague, “New algorithm based on the Hough transform for the analysis of pulsed thermographic sequences,” NDT & E Int. 39, 617–621 (2006).
[CrossRef]

Grinzato, E.

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

G. Manduchi, S. Marinetti, P. Bison, and E. Grinzato, “Application of neural network computing to thermal non-destructive evaluation,” Neural Comput. Applic. 6, 148–157(1997).
[CrossRef]

V. P. Vavilov, D. G. Kourtenkov, E. Grinzato, P. G. Bison, S. Marinetti, and C. Bressan, “Inversion of experimental data and thermal tomography using Termo.Heat and Termidge software,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 273–280.

V. Vavilov, P. G. Bison, C. Bressan, E. Grinzato, and S. Marinetti, “Some new ideas in dynamic thermal tomography,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 259–265.

Guaragnella, C.

T. D’Orazio, C. Guaragnella, M. Leo, and P. Spagnolo, “Defect detection in aircraft composites by using a neural approach in the analysis of thermographic sequences,” NDT & E Int. 38, 665–673 (2005).
[CrossRef]

Hassan, M. I.

M. Omar, M. I. Hassan, K. Saito, and R. Alloo, “IR self-referencing thermography for detection of in-depth defects,” Infrared Phys. Technol. 46, 283–289 (2005).
[CrossRef]

Ibarra-Castanedo, C.

D. A. Gonzalez, C. Ibarra-Castanedo, J. M. Lopez-Higuera, and X. Maldague, “New algorithm based on the Hough transform for the analysis of pulsed thermographic sequences,” NDT & E Int. 39, 617–621 (2006).
[CrossRef]

M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermogr. J. 3, 219–230 (2006).
[CrossRef]

Ilie, M.

M. Speka, S. Mattei, M. Pilloz, and M. Ilie, “The infrared thermography control of the laser welding of amorphous polymers,” NDT & E Int. 41, 178–183 (2008).
[CrossRef]

Incropera, F. P.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2007).

Ivanov, A.

V. Vavilov, D. Nesteruk, V. Shirayev, and A. Ivanov, “Some novel approaches to thermal tomography of CFRP composites,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 433–440.

Karpen, W.

G. Busse, D. Wu, and W. Karpen, “Thermal wave imaging with phase sensitive modulated thermography,” J. Appl. Phys. 71, 3962–3965 (1992).
[CrossRef]

Kourtenkov, D. G.

V. P. Vavilov, D. G. Kourtenkov, E. Grinzato, P. G. Bison, S. Marinetti, and C. Bressan, “Inversion of experimental data and thermal tomography using Termo.Heat and Termidge software,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 273–280.

Kreutzbruck, M.

J. Schlichting, C. Maierhofer, and M. Kreutzbruck, “Defect sizing by local excitation thermography,” Quant. Infrared Thermogr. J. 8, 51–63 (2011).
[CrossRef]

Langmeier, A.

C. Zoecke, A. Langmeier, and W. Arnold, “Size retrieval of defects in composite material with lockin thermography,” J. Phys. USSR 214, 012093 (2010).
[CrossRef]

Lavine, A. S.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2007).

Leo, M.

T. D’Orazio, C. Guaragnella, M. Leo, and P. Spagnolo, “Defect detection in aircraft composites by using a neural approach in the analysis of thermographic sequences,” NDT & E Int. 38, 665–673 (2005).
[CrossRef]

Lhota, J. R.

S. M. Shepard, J. R. Lhota, B. A. Rubadeux, T. Ahmed, and D. Wang, “Enhancement and reconstruction of thermographic data,” Proc. SPIE 4710, 531–535 (2002).
[CrossRef]

Loaiza, H.

M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermogr. J. 3, 219–230 (2006).
[CrossRef]

Lopez-Higuera, J. M.

D. A. Gonzalez, C. Ibarra-Castanedo, J. M. Lopez-Higuera, and X. Maldague, “New algorithm based on the Hough transform for the analysis of pulsed thermographic sequences,” NDT & E Int. 39, 617–621 (2006).
[CrossRef]

Lugin, S.

S. Lugin and U. Netzelmann, “A defect shape reconstruction algorithm for pulsed thermography,” NDT & E Int. 40, 220–228 (2007).
[CrossRef]

S. Lugin and U. Netzelmann, “An effective compression algorithm for pulsed thermography data,” NDT & E Int. 38, 485–490 (2005).
[CrossRef]

Maierhofer, C.

J. Schlichting, C. Maierhofer, and M. Kreutzbruck, “Defect sizing by local excitation thermography,” Quant. Infrared Thermogr. J. 8, 51–63 (2011).
[CrossRef]

Maillet, D.

A. Degiovanni, A. Bendada, J. C. Betsale, and D. Maillet, “Analytical simulation of a multi-dimensional field produced by planar defects of any shape; application to nondestructive testing,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 253–259.

A. Bendada, D. Maillet, and A. Degiovanni, “Nondestructive transient thermal evaluation of laminated composites: discrimination between delaminations thickness variations and multidelaminations,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 218–223.

Maldague, X.

D. A. Gonzalez, C. Ibarra-Castanedo, J. M. Lopez-Higuera, and X. Maldague, “New algorithm based on the Hough transform for the analysis of pulsed thermographic sequences,” NDT & E Int. 39, 617–621 (2006).
[CrossRef]

M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermogr. J. 3, 219–230 (2006).
[CrossRef]

X. Maldague and S. Marinetti, “Pulse phase infrared thermography,” J. Appl. Phys. 79, 2694–2698 (1996).
[CrossRef]

V. Vavilov, X. Maldague, B. Dufort, F. Robitaille, and J. Picard, “Thermal nondestructive testing of carbon epoxy composites: detailed analysis and data processing,” NDT & E Int. 26, 85–95 (1993).
[CrossRef]

V. Vavilov, X. Maldague, J. Picard, R. L. Thomas, and L. D. Favro, “Dynamic thermal tomography: new NDE technique to reconstruct inner solids structure by using multiple IR image processing,” in Review of Progress in Quantitative Nondestructive Evaluation, Proceedings of the 18th Annual Review, Vol. 11A, D. O. Thompson and D. E. Chimenti, eds. (Plenum, 1992), pp. 425–432.

X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley-Interscience, 2001).

Maldague, X. P.

X. P. Maldague and P. O. Moore, “Infrared and thermal testing,” in Nondestructive Testing Handbook (ASNT, 2001), Vol. 3.

Manduchi, G.

G. Manduchi, S. Marinetti, P. Bison, and E. Grinzato, “Application of neural network computing to thermal non-destructive evaluation,” Neural Comput. Applic. 6, 148–157(1997).
[CrossRef]

Marinetti, S.

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

G. Manduchi, S. Marinetti, P. Bison, and E. Grinzato, “Application of neural network computing to thermal non-destructive evaluation,” Neural Comput. Applic. 6, 148–157(1997).
[CrossRef]

X. Maldague and S. Marinetti, “Pulse phase infrared thermography,” J. Appl. Phys. 79, 2694–2698 (1996).
[CrossRef]

V. P. Vavilov, D. G. Kourtenkov, E. Grinzato, P. G. Bison, S. Marinetti, and C. Bressan, “Inversion of experimental data and thermal tomography using Termo.Heat and Termidge software,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 273–280.

V. Vavilov, P. G. Bison, C. Bressan, E. Grinzato, and S. Marinetti, “Some new ideas in dynamic thermal tomography,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 259–265.

Mattei, S.

M. Speka, S. Mattei, M. Pilloz, and M. Ilie, “The infrared thermography control of the laser welding of amorphous polymers,” NDT & E Int. 41, 178–183 (2008).
[CrossRef]

Moore, P. O.

X. P. Maldague and P. O. Moore, “Infrared and thermal testing,” in Nondestructive Testing Handbook (ASNT, 2001), Vol. 3.

Naiming, W.

C. Dapeng, W. Naiming, Z. Zheng, L. Yue, L. Xiaoxia, and Z. Cunlin, “Detection of impact damages in CFRP composites using ultrasonic burst phase thermography,” Mater. Sci. Forum 689, 282–288 (2011).
[CrossRef]

Nesteruk, D.

V. Vavilov, D. Nesteruk, V. Shirayev, and A. Ivanov, “Some novel approaches to thermal tomography of CFRP composites,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 433–440.

Netzelmann, U.

S. Lugin and U. Netzelmann, “A defect shape reconstruction algorithm for pulsed thermography,” NDT & E Int. 40, 220–228 (2007).
[CrossRef]

S. Lugin and U. Netzelmann, “An effective compression algorithm for pulsed thermography data,” NDT & E Int. 38, 485–490 (2005).
[CrossRef]

Z. Alsaadawi and U. Netzelmann, “Spatio-temporal filtering of active thermography data for noise reduction and data compression,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 383–390.

Omar, M.

M. Omar, M. I. Hassan, K. Saito, and R. Alloo, “IR self-referencing thermography for detection of in-depth defects,” Infrared Phys. Technol. 46, 283–289 (2005).
[CrossRef]

Paez, G.

J. C. Ramirez-Granados, G. Paez, and M. Strojnik, “Reconstruction and analysis of pulsed thermographic sequences for nondestructive testing of layered materials,” Appl. Opt. 49, 1494–1502 (2010).
[CrossRef]

M. Strojnik and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007).
[CrossRef]

G. Paez and M. Strojnik, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 46, 141–145 (2004).
[CrossRef]

Picard, J.

V. Vavilov, X. Maldague, B. Dufort, F. Robitaille, and J. Picard, “Thermal nondestructive testing of carbon epoxy composites: detailed analysis and data processing,” NDT & E Int. 26, 85–95 (1993).
[CrossRef]

V. Vavilov, X. Maldague, J. Picard, R. L. Thomas, and L. D. Favro, “Dynamic thermal tomography: new NDE technique to reconstruct inner solids structure by using multiple IR image processing,” in Review of Progress in Quantitative Nondestructive Evaluation, Proceedings of the 18th Annual Review, Vol. 11A, D. O. Thompson and D. E. Chimenti, eds. (Plenum, 1992), pp. 425–432.

Pilloz, M.

M. Speka, S. Mattei, M. Pilloz, and M. Ilie, “The infrared thermography control of the laser welding of amorphous polymers,” NDT & E Int. 41, 178–183 (2008).
[CrossRef]

Ramirez-Granados, J. C.

Ren-Bing, L.

Y. Zheng-Wei, Z. Wei, T. Gan, L. Ren-Bing, and S. Yuan-Jia, “Multi-pulse infrared thermography applied to improve defect detectability of composites,” Appl. Mechanics Mat. 58–60, 463–468 (2011).
[CrossRef]

Riegert, G.

G. Riegert, T. Zweschper, and G. Busse, “Lock-in thermography with eddy current excitation,” Quant. Infrared Thermogr. J. 1, 21–32 (2004).

Robitaille, F.

V. Vavilov, X. Maldague, B. Dufort, F. Robitaille, and J. Picard, “Thermal nondestructive testing of carbon epoxy composites: detailed analysis and data processing,” NDT & E Int. 26, 85–95 (1993).
[CrossRef]

Rubadeux, B. A.

S. M. Shepard, J. R. Lhota, B. A. Rubadeux, T. Ahmed, and D. Wang, “Enhancement and reconstruction of thermographic data,” Proc. SPIE 4710, 531–535 (2002).
[CrossRef]

Saito, K.

M. Omar, M. I. Hassan, K. Saito, and R. Alloo, “IR self-referencing thermography for detection of in-depth defects,” Infrared Phys. Technol. 46, 283–289 (2005).
[CrossRef]

Schlichting, J.

J. Schlichting, C. Maierhofer, and M. Kreutzbruck, “Defect sizing by local excitation thermography,” Quant. Infrared Thermogr. J. 8, 51–63 (2011).
[CrossRef]

Scholl, M. S.

Shepard, S. M.

S. M. Shepard, J. R. Lhota, B. A. Rubadeux, T. Ahmed, and D. Wang, “Enhancement and reconstruction of thermographic data,” Proc. SPIE 4710, 531–535 (2002).
[CrossRef]

Shirayev, V.

V. Vavilov, D. Nesteruk, V. Shirayev, and A. Ivanov, “Some novel approaches to thermal tomography of CFRP composites,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 433–440.

Spagnolo, P.

T. D’Orazio, C. Guaragnella, M. Leo, and P. Spagnolo, “Defect detection in aircraft composites by using a neural approach in the analysis of thermographic sequences,” NDT & E Int. 38, 665–673 (2005).
[CrossRef]

Speka, M.

M. Speka, S. Mattei, M. Pilloz, and M. Ilie, “The infrared thermography control of the laser welding of amorphous polymers,” NDT & E Int. 41, 178–183 (2008).
[CrossRef]

Strojnik, M.

J. C. Ramirez-Granados, G. Paez, and M. Strojnik, “Reconstruction and analysis of pulsed thermographic sequences for nondestructive testing of layered materials,” Appl. Opt. 49, 1494–1502 (2010).
[CrossRef]

M. Strojnik and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007).
[CrossRef]

G. Paez and M. Strojnik, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 46, 141–145 (2004).
[CrossRef]

Susa, M.

M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermogr. J. 3, 219–230 (2006).
[CrossRef]

Thomas, R. L.

V. Vavilov, X. Maldague, J. Picard, R. L. Thomas, and L. D. Favro, “Dynamic thermal tomography: new NDE technique to reconstruct inner solids structure by using multiple IR image processing,” in Review of Progress in Quantitative Nondestructive Evaluation, Proceedings of the 18th Annual Review, Vol. 11A, D. O. Thompson and D. E. Chimenti, eds. (Plenum, 1992), pp. 425–432.

Vavilov, V.

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

V. Vavilov, X. Maldague, B. Dufort, F. Robitaille, and J. Picard, “Thermal nondestructive testing of carbon epoxy composites: detailed analysis and data processing,” NDT & E Int. 26, 85–95 (1993).
[CrossRef]

V. Vavilov, P. G. Bison, C. Bressan, E. Grinzato, and S. Marinetti, “Some new ideas in dynamic thermal tomography,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 259–265.

V. Vavilov, X. Maldague, J. Picard, R. L. Thomas, and L. D. Favro, “Dynamic thermal tomography: new NDE technique to reconstruct inner solids structure by using multiple IR image processing,” in Review of Progress in Quantitative Nondestructive Evaluation, Proceedings of the 18th Annual Review, Vol. 11A, D. O. Thompson and D. E. Chimenti, eds. (Plenum, 1992), pp. 425–432.

V. Vavilov, D. Nesteruk, V. Shirayev, and A. Ivanov, “Some novel approaches to thermal tomography of CFRP composites,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 433–440.

Vavilov, V. P.

V. P. Vavilov, D. G. Kourtenkov, E. Grinzato, P. G. Bison, S. Marinetti, and C. Bressan, “Inversion of experimental data and thermal tomography using Termo.Heat and Termidge software,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 273–280.

Wang, D.

S. M. Shepard, J. R. Lhota, B. A. Rubadeux, T. Ahmed, and D. Wang, “Enhancement and reconstruction of thermographic data,” Proc. SPIE 4710, 531–535 (2002).
[CrossRef]

Wei, Z.

Y. Zheng-Wei, Z. Wei, T. Gan, L. Ren-Bing, and S. Yuan-Jia, “Multi-pulse infrared thermography applied to improve defect detectability of composites,” Appl. Mechanics Mat. 58–60, 463–468 (2011).
[CrossRef]

Wu, D.

G. Busse, D. Wu, and W. Karpen, “Thermal wave imaging with phase sensitive modulated thermography,” J. Appl. Phys. 71, 3962–3965 (1992).
[CrossRef]

Xiaoxia, L.

C. Dapeng, W. Naiming, Z. Zheng, L. Yue, L. Xiaoxia, and Z. Cunlin, “Detection of impact damages in CFRP composites using ultrasonic burst phase thermography,” Mater. Sci. Forum 689, 282–288 (2011).
[CrossRef]

Yuan-Jia, S.

Y. Zheng-Wei, Z. Wei, T. Gan, L. Ren-Bing, and S. Yuan-Jia, “Multi-pulse infrared thermography applied to improve defect detectability of composites,” Appl. Mechanics Mat. 58–60, 463–468 (2011).
[CrossRef]

Yue, L.

C. Dapeng, W. Naiming, Z. Zheng, L. Yue, L. Xiaoxia, and Z. Cunlin, “Detection of impact damages in CFRP composites using ultrasonic burst phase thermography,” Mater. Sci. Forum 689, 282–288 (2011).
[CrossRef]

Zheng, Z.

C. Dapeng, W. Naiming, Z. Zheng, L. Yue, L. Xiaoxia, and Z. Cunlin, “Detection of impact damages in CFRP composites using ultrasonic burst phase thermography,” Mater. Sci. Forum 689, 282–288 (2011).
[CrossRef]

Zheng-Wei, Y.

Y. Zheng-Wei, Z. Wei, T. Gan, L. Ren-Bing, and S. Yuan-Jia, “Multi-pulse infrared thermography applied to improve defect detectability of composites,” Appl. Mechanics Mat. 58–60, 463–468 (2011).
[CrossRef]

Zmeureanu, R.

M. B. Dufour, D. Derome, and R. Zmeureanu, “Analysis of thermograms for the estimation of dimensions of cracks in building envelope,” Infrared Phys. Technol. 52, 70–78 (2009).
[CrossRef]

Zoecke, C.

C. Zoecke, A. Langmeier, and W. Arnold, “Size retrieval of defects in composite material with lockin thermography,” J. Phys. USSR 214, 012093 (2010).
[CrossRef]

Zweschper, T.

G. Riegert, T. Zweschper, and G. Busse, “Lock-in thermography with eddy current excitation,” Quant. Infrared Thermogr. J. 1, 21–32 (2004).

Appl. Mechanics Mat. (1)

Y. Zheng-Wei, Z. Wei, T. Gan, L. Ren-Bing, and S. Yuan-Jia, “Multi-pulse infrared thermography applied to improve defect detectability of composites,” Appl. Mechanics Mat. 58–60, 463–468 (2011).
[CrossRef]

Appl. Opt. (2)

Infrared Phys. Technol. (4)

M. B. Dufour, D. Derome, and R. Zmeureanu, “Analysis of thermograms for the estimation of dimensions of cracks in building envelope,” Infrared Phys. Technol. 52, 70–78 (2009).
[CrossRef]

G. Paez and M. Strojnik, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 46, 141–145 (2004).
[CrossRef]

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

M. Omar, M. I. Hassan, K. Saito, and R. Alloo, “IR self-referencing thermography for detection of in-depth defects,” Infrared Phys. Technol. 46, 283–289 (2005).
[CrossRef]

J. Appl. Phys. (3)

G. Busse, D. Wu, and W. Karpen, “Thermal wave imaging with phase sensitive modulated thermography,” J. Appl. Phys. 71, 3962–3965 (1992).
[CrossRef]

P. Cielo, “Pulsed photothermal evaluation of layered materials,” J. Appl. Phys. 56, 230–234 (1984).
[CrossRef]

X. Maldague and S. Marinetti, “Pulse phase infrared thermography,” J. Appl. Phys. 79, 2694–2698 (1996).
[CrossRef]

J. Phys. USSR (1)

C. Zoecke, A. Langmeier, and W. Arnold, “Size retrieval of defects in composite material with lockin thermography,” J. Phys. USSR 214, 012093 (2010).
[CrossRef]

Mater. Sci. Forum (1)

C. Dapeng, W. Naiming, Z. Zheng, L. Yue, L. Xiaoxia, and Z. Cunlin, “Detection of impact damages in CFRP composites using ultrasonic burst phase thermography,” Mater. Sci. Forum 689, 282–288 (2011).
[CrossRef]

NDT & E Int. (6)

T. D’Orazio, C. Guaragnella, M. Leo, and P. Spagnolo, “Defect detection in aircraft composites by using a neural approach in the analysis of thermographic sequences,” NDT & E Int. 38, 665–673 (2005).
[CrossRef]

M. Speka, S. Mattei, M. Pilloz, and M. Ilie, “The infrared thermography control of the laser welding of amorphous polymers,” NDT & E Int. 41, 178–183 (2008).
[CrossRef]

S. Lugin and U. Netzelmann, “A defect shape reconstruction algorithm for pulsed thermography,” NDT & E Int. 40, 220–228 (2007).
[CrossRef]

S. Lugin and U. Netzelmann, “An effective compression algorithm for pulsed thermography data,” NDT & E Int. 38, 485–490 (2005).
[CrossRef]

V. Vavilov, X. Maldague, B. Dufort, F. Robitaille, and J. Picard, “Thermal nondestructive testing of carbon epoxy composites: detailed analysis and data processing,” NDT & E Int. 26, 85–95 (1993).
[CrossRef]

D. A. Gonzalez, C. Ibarra-Castanedo, J. M. Lopez-Higuera, and X. Maldague, “New algorithm based on the Hough transform for the analysis of pulsed thermographic sequences,” NDT & E Int. 39, 617–621 (2006).
[CrossRef]

Neural Comput. Applic. (1)

G. Manduchi, S. Marinetti, P. Bison, and E. Grinzato, “Application of neural network computing to thermal non-destructive evaluation,” Neural Comput. Applic. 6, 148–157(1997).
[CrossRef]

Opt. Eng. (1)

M. Strojnik and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007).
[CrossRef]

Proc. SPIE (1)

S. M. Shepard, J. R. Lhota, B. A. Rubadeux, T. Ahmed, and D. Wang, “Enhancement and reconstruction of thermographic data,” Proc. SPIE 4710, 531–535 (2002).
[CrossRef]

Quant. Infrared Thermogr. J. (3)

J. Schlichting, C. Maierhofer, and M. Kreutzbruck, “Defect sizing by local excitation thermography,” Quant. Infrared Thermogr. J. 8, 51–63 (2011).
[CrossRef]

G. Riegert, T. Zweschper, and G. Busse, “Lock-in thermography with eddy current excitation,” Quant. Infrared Thermogr. J. 1, 21–32 (2004).

M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermogr. J. 3, 219–230 (2006).
[CrossRef]

Other (12)

V. Vavilov, D. Nesteruk, V. Shirayev, and A. Ivanov, “Some novel approaches to thermal tomography of CFRP composites,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 433–440.

D. L. Balageas, “Thickness or diffusivity measurements from front-face flash experiments using the TSR (thermographic signal reconstruction) approach,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 873–880.

X. P. Maldague and P. O. Moore, “Infrared and thermal testing,” in Nondestructive Testing Handbook (ASNT, 2001), Vol. 3.

X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley-Interscience, 2001).

V. Vavilov, P. G. Bison, C. Bressan, E. Grinzato, and S. Marinetti, “Some new ideas in dynamic thermal tomography,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 259–265.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2007).

P. G. Berardi and G. Cuccurullo, “Data reduction in flash method thermography,” in Proceedings of the 5th International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 64, D. Balageas, J. L. Beaudoin, G. Busse, and G. M. Carlomagno, eds. (EETI, 2000), pp. 188–193.

Z. Alsaadawi and U. Netzelmann, “Spatio-temporal filtering of active thermography data for noise reduction and data compression,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 383–390.

V. P. Vavilov, D. G. Kourtenkov, E. Grinzato, P. G. Bison, S. Marinetti, and C. Bressan, “Inversion of experimental data and thermal tomography using Termo.Heat and Termidge software,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 273–280.

A. Degiovanni, A. Bendada, J. C. Betsale, and D. Maillet, “Analytical simulation of a multi-dimensional field produced by planar defects of any shape; application to nondestructive testing,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 253–259.

V. Vavilov, X. Maldague, J. Picard, R. L. Thomas, and L. D. Favro, “Dynamic thermal tomography: new NDE technique to reconstruct inner solids structure by using multiple IR image processing,” in Review of Progress in Quantitative Nondestructive Evaluation, Proceedings of the 18th Annual Review, Vol. 11A, D. O. Thompson and D. E. Chimenti, eds. (Plenum, 1992), pp. 425–432.

A. Bendada, D. Maillet, and A. Degiovanni, “Nondestructive transient thermal evaluation of laminated composites: discrimination between delaminations thickness variations and multidelaminations,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 218–223.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

In this heat transfer analysis, the object is a semi-infinite solid composed of layers with thermal conductivity k, density ρ, and specific heat cp. Initially, the object has a uniform temperature (T0). Then, its surface is homogeneously irradiated with a heat pulse whose temporal evolution is shown in the upper left corner of the figure. The object is in a room temperature (T) environment with average convection coefficient h.

Fig. 2.
Fig. 2.

A nodal network is generated for the creation of the finite difference model. We build nodes with parallelepiped shape to obtain general equations. The shaded portions of the diagrams in the upper part of the figure represent the orthogonal faces of an internal node with coordinates (l,m,n).

Fig. 3.
Fig. 3.

The front surface of an internal defect (in light gray) is the part of its surface in front of the IR camera; the rest is the back surface (in dark gray). The area above the defect has a thermal response different from that encountered on the rest of the surface of the object. This allows us to identify defective zones.

Fig. 4.
Fig. 4.

We propose to reconstruct inner defects in three dimensions with a depth d(l,m) and a thickness e(l,m) function. P is an arbitrary point on the surface of the object with coordinates (l,m).

Fig. 5.
Fig. 5.

Flow-chart of the algorithm employed to detect subsurface defects and to determine the depth and thickness functions. These functions are used in the reconstruction of internal defects with 3-D graphics.

Fig. 6.
Fig. 6.

A setup in reflection mode for pulsed thermography consists of an IR camera, one or several synchronized heat sources (e.g. flash lamps) that provide a short thermal pulse, and a data-processing system. The pulse usually takes from a few milliseconds to a few seconds, depending on the size and properties of the object.

Fig. 7.
Fig. 7.

The modeled object is a plate with one layer of polyvinyl chloride (PVC) bonded to one layer of an aluminum alloy known as Duralumin. Dimensions of the width (W), height (H), and total thickness (V) are in millimeters.

Fig. 8.
Fig. 8.

The subsurface defect in the layered plate is represented by the shaded portion of the mesh graphs. In part (a), we show the actual geometry of the defect. The upper surface of the defect is flat, and it is 0.4 mm under the surface of the plate. In part (b), we appreciate the reconstruction of the detected defect by means of the proposed technique. Comparing both graphics, we notice that the reconstructed defect resembles the actual one with reliability.

Tables (1)

Tables Icon

Table 1. Thermal Conductivity (k), Density (ρ), and Specific Heat Capacity at Constant Pressure (cp) of Selected Materials

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

·[kT(x,y,z,t)]q(x,y,z,t)=ρcpT(x,y,z,t)t.
2T(x,y,z,t)=1αiT(x,y,z,t)t.
Tl,m,np+1=a(Tl+1,m,np+Tl1,m,np)+b(Tl,m+1,np+Tl,m1,np)+c(Tl,m,n+1p+Tl,m,n1p)+fTl,m,np,
Tl,m,0p+1=A(Tl+1,m,0p+Tl1,m,0p)+B(Tl,m+1,0p+Tl,m1,0p)+CTl,m,1p+FTl,m,0p+G.
Qp=l=0L1m=0M1|Trl,m,0pTsl,m,0p|Δt.

Metrics