Abstract

Hollow glass waveguides, composed of Ag/AgI coatings, have been studied at 10.6 µm. The losses for different bore sizes equal the theoretical loss, which for the 700 µm bore guide was about 0.15dB/m. The losses for the guides increase upon bending, varying linearly with increasing curvature. These hollow guides propagate a single mode when the bore size of the guide is approximately 30λ. In addition, the best single-mode transmission is obtained when the thickness of the glass wall is large. These smaller bores, thick wall hollow guides, can also be used to filter higher order modes from poor quality input laser beams.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, Bellingham, WA, 2004).
  2. Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [CrossRef]
  3. Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
    [CrossRef]
  4. Y. Matsuura, C. Rabii, K. Matsuura, and J. Harrington, “Low-order multimode generation in hollow glass waveguides,” Electron. Lett. 32, 1096–1098 (1996).
    [CrossRef]
  5. N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow plastic fibers for the transmission of infra-red radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef]
  6. A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, “Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides,” Opt. Eng. 39, 1316–1320 (2000).
    [CrossRef]
  7. K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
    [CrossRef]
  8. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  9. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
    [CrossRef]
  10. R. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
    [CrossRef]

2000 (1)

A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, “Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides,” Opt. Eng. 39, 1316–1320 (2000).
[CrossRef]

1998 (1)

R. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

1996 (2)

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Y. Matsuura, C. Rabii, K. Matsuura, and J. Harrington, “Low-order multimode generation in hollow glass waveguides,” Electron. Lett. 32, 1096–1098 (1996).
[CrossRef]

1995 (1)

1994 (1)

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

1990 (1)

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Abel, T.

Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef]

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

Ben-David, M.

A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, “Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides,” Opt. Eng. 39, 1316–1320 (2000).
[CrossRef]

Croitoru, N.

A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, “Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides,” Opt. Eng. 39, 1316–1320 (2000).
[CrossRef]

N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow plastic fibers for the transmission of infra-red radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef]

Dror, J.

Gannot, I.

Harrington, J.

Y. Matsuura, C. Rabii, K. Matsuura, and J. Harrington, “Low-order multimode generation in hollow glass waveguides,” Electron. Lett. 32, 1096–1098 (1996).
[CrossRef]

Harrington, J. A.

R. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef]

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, Bellingham, WA, 2004).

Hirsch, J.

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

Inberg, A.

A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, “Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides,” Opt. Eng. 39, 1316–1320 (2000).
[CrossRef]

Katzir, A.

A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, “Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides,” Opt. Eng. 39, 1316–1320 (2000).
[CrossRef]

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Matsuura, K.

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Y. Matsuura, C. Rabii, K. Matsuura, and J. Harrington, “Low-order multimode generation in hollow glass waveguides,” Electron. Lett. 32, 1096–1098 (1996).
[CrossRef]

Matsuura, Y.

Y. Matsuura, C. Rabii, K. Matsuura, and J. Harrington, “Low-order multimode generation in hollow glass waveguides,” Electron. Lett. 32, 1096–1098 (1996).
[CrossRef]

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef]

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

Miyagi, M.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

Nubling, R.

R. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Oksman, M.

A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, “Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides,” Opt. Eng. 39, 1316–1320 (2000).
[CrossRef]

Rabii, C.

Y. Matsuura, C. Rabii, K. Matsuura, and J. Harrington, “Low-order multimode generation in hollow glass waveguides,” Electron. Lett. 32, 1096–1098 (1996).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Electron. Lett. (2)

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

Y. Matsuura, C. Rabii, K. Matsuura, and J. Harrington, “Low-order multimode generation in hollow glass waveguides,” Electron. Lett. 32, 1096–1098 (1996).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

Opt. Eng. (3)

R. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, “Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides,” Opt. Eng. 39, 1316–1320 (2000).
[CrossRef]

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Other (1)

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, Bellingham, WA, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Cross section of an Ag/AgI coated HGW.

Fig. 2.
Fig. 2.

Setup for (a) silvering and (b) iodizing silica capillary tubing.

Fig. 3.
Fig. 3.

Fourier transform infrared spectroscopy spectra of Ag/AgI HGW at different iodization times.

Fig. 4.
Fig. 4.

AgI film growth kinetics as a function of iodization time.

Fig. 5.
Fig. 5.

Measured and theoretical attenuation of HE11 in Ag/AgI HGWs.

Fig. 6.
Fig. 6.

Bending losses for Ag/AgI HGWs with different bore size and outer dimensions. The sizes are given in terms of the bore/outer diameter in microns.

Fig. 7.
Fig. 7.

Mode profile for a 300/665μm (a) straight and (b) bent HGW and a 320/450μm (c) straight and (d) bent HGW.

Fig. 8.
Fig. 8.

Mode profile for HGWS for a 510/1050μm (a) straight and (b) bent HGW and a 625/850μm (c) straight and (d) bent.

Fig. 9.
Fig. 9.

Mode filtering by 300/665μm HGW: (a) scrambled input and (b) filtered output.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d=λopt4nd21,
d0=λd2πnF21tan1(nF(nF21)1/4),
αlm=(ulm2π)2λ2a3(nn2+k2)metal·Ffilm,

Metrics