Abstract

Optical standing wave sensors have been manufactured by amorphous silicon deposition. The responses of these sensors, when subjected to standing waves, have been calculated and measured. It is shown that the responses are different depending on the way the standing wave is created. The responses also depend on the thickness and material properties of the layers used to create the sensors. Quantitative agreement between measurements and model calculations can be obtained by including alignment errors, incoherent light interaction and scaling factors. The simple construction of the sensors allows for a broad application range.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Wiener, “Stehende lichtwellen und die schwingungsrichtung polarisirten lichtes,” Ann. Phys. Chemie 276, 203–243 (1890).
    [CrossRef]
  2. H. E. Ives and T. C. Fry, “Standing light waves; repetition of an experiment by Wiener, using a photoelectric probe surface,” J. Opt. Soc. Am. 23, 73–83 (1933).
    [CrossRef]
  3. H. Jäger, “Ein neues beobachtumgsverfahrem für stehende lichtwellen,” Ann. Phys. 5, 280–296 (1939).
  4. E. W. Silvertooth and S. F. Jacobs, “Standing wave sensor,” Appl. Opt. 22, 1274–1275 (1983).
    [CrossRef]
  5. L. Carraresi, E. A. De Souza, D. A. B. Miller, W. Y. Jan, and J. E. Cunningham, “Wavelength-selective detector based on a quantum well in a standing wave,” Appl. Phys. Lett. 64, 134–137 (1994).
    [CrossRef]
  6. M. Sasaki, X. Mi, and K. Hane, “Standing wave detection and interferometer application using a photodiode thinner than optical wavelength,” Appl. Phys. Lett. 75, 2008–2010 (1999).
    [CrossRef]
  7. H-J. Büchner, H. Stiebig, V. Mandryka, E. Bunte, and G. Jäger, “An optical standing-wave interferometer for displacement measurements,” Meas. Sci. Technol. 14, 311 (2003).
    [CrossRef]
  8. Y. Li, X. Mi, M. Sasaki, and K. Hane, “Precision optical displacement sensor based on ultra-thin film photodiode type optical interferometers,” Meas. Sci. Technol. 14, 479–483 (2003).
    [CrossRef]
  9. V. O. de Haan de, R. Santbergen, M. Tijssen, and M. Zeman, “Standing waves in fiber optic interferometers,” Appl. Opt. 50, 5674–5687 (2011).
    [CrossRef]
  10. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
    [CrossRef]

2011

2003

H-J. Büchner, H. Stiebig, V. Mandryka, E. Bunte, and G. Jäger, “An optical standing-wave interferometer for displacement measurements,” Meas. Sci. Technol. 14, 311 (2003).
[CrossRef]

Y. Li, X. Mi, M. Sasaki, and K. Hane, “Precision optical displacement sensor based on ultra-thin film photodiode type optical interferometers,” Meas. Sci. Technol. 14, 479–483 (2003).
[CrossRef]

1999

M. Sasaki, X. Mi, and K. Hane, “Standing wave detection and interferometer application using a photodiode thinner than optical wavelength,” Appl. Phys. Lett. 75, 2008–2010 (1999).
[CrossRef]

1994

L. Carraresi, E. A. De Souza, D. A. B. Miller, W. Y. Jan, and J. E. Cunningham, “Wavelength-selective detector based on a quantum well in a standing wave,” Appl. Phys. Lett. 64, 134–137 (1994).
[CrossRef]

1983

1980

1939

H. Jäger, “Ein neues beobachtumgsverfahrem für stehende lichtwellen,” Ann. Phys. 5, 280–296 (1939).

1933

1890

O. Wiener, “Stehende lichtwellen und die schwingungsrichtung polarisirten lichtes,” Ann. Phys. Chemie 276, 203–243 (1890).
[CrossRef]

Büchner, H-J.

H-J. Büchner, H. Stiebig, V. Mandryka, E. Bunte, and G. Jäger, “An optical standing-wave interferometer for displacement measurements,” Meas. Sci. Technol. 14, 311 (2003).
[CrossRef]

Bunte, E.

H-J. Büchner, H. Stiebig, V. Mandryka, E. Bunte, and G. Jäger, “An optical standing-wave interferometer for displacement measurements,” Meas. Sci. Technol. 14, 311 (2003).
[CrossRef]

Carraresi, L.

L. Carraresi, E. A. De Souza, D. A. B. Miller, W. Y. Jan, and J. E. Cunningham, “Wavelength-selective detector based on a quantum well in a standing wave,” Appl. Phys. Lett. 64, 134–137 (1994).
[CrossRef]

Cunningham, J. E.

L. Carraresi, E. A. De Souza, D. A. B. Miller, W. Y. Jan, and J. E. Cunningham, “Wavelength-selective detector based on a quantum well in a standing wave,” Appl. Phys. Lett. 64, 134–137 (1994).
[CrossRef]

de Haan de, V. O.

De Souza, E. A.

L. Carraresi, E. A. De Souza, D. A. B. Miller, W. Y. Jan, and J. E. Cunningham, “Wavelength-selective detector based on a quantum well in a standing wave,” Appl. Phys. Lett. 64, 134–137 (1994).
[CrossRef]

Eickhoff, W.

Fry, T. C.

Hane, K.

Y. Li, X. Mi, M. Sasaki, and K. Hane, “Precision optical displacement sensor based on ultra-thin film photodiode type optical interferometers,” Meas. Sci. Technol. 14, 479–483 (2003).
[CrossRef]

M. Sasaki, X. Mi, and K. Hane, “Standing wave detection and interferometer application using a photodiode thinner than optical wavelength,” Appl. Phys. Lett. 75, 2008–2010 (1999).
[CrossRef]

Ives, H. E.

Jacobs, S. F.

Jäger, G.

H-J. Büchner, H. Stiebig, V. Mandryka, E. Bunte, and G. Jäger, “An optical standing-wave interferometer for displacement measurements,” Meas. Sci. Technol. 14, 311 (2003).
[CrossRef]

Jäger, H.

H. Jäger, “Ein neues beobachtumgsverfahrem für stehende lichtwellen,” Ann. Phys. 5, 280–296 (1939).

Jan, W. Y.

L. Carraresi, E. A. De Souza, D. A. B. Miller, W. Y. Jan, and J. E. Cunningham, “Wavelength-selective detector based on a quantum well in a standing wave,” Appl. Phys. Lett. 64, 134–137 (1994).
[CrossRef]

Li, Y.

Y. Li, X. Mi, M. Sasaki, and K. Hane, “Precision optical displacement sensor based on ultra-thin film photodiode type optical interferometers,” Meas. Sci. Technol. 14, 479–483 (2003).
[CrossRef]

Mandryka, V.

H-J. Büchner, H. Stiebig, V. Mandryka, E. Bunte, and G. Jäger, “An optical standing-wave interferometer for displacement measurements,” Meas. Sci. Technol. 14, 311 (2003).
[CrossRef]

Mi, X.

Y. Li, X. Mi, M. Sasaki, and K. Hane, “Precision optical displacement sensor based on ultra-thin film photodiode type optical interferometers,” Meas. Sci. Technol. 14, 479–483 (2003).
[CrossRef]

M. Sasaki, X. Mi, and K. Hane, “Standing wave detection and interferometer application using a photodiode thinner than optical wavelength,” Appl. Phys. Lett. 75, 2008–2010 (1999).
[CrossRef]

Miller, D. A. B.

L. Carraresi, E. A. De Souza, D. A. B. Miller, W. Y. Jan, and J. E. Cunningham, “Wavelength-selective detector based on a quantum well in a standing wave,” Appl. Phys. Lett. 64, 134–137 (1994).
[CrossRef]

Rashleigh, S. C.

Santbergen, R.

Sasaki, M.

Y. Li, X. Mi, M. Sasaki, and K. Hane, “Precision optical displacement sensor based on ultra-thin film photodiode type optical interferometers,” Meas. Sci. Technol. 14, 479–483 (2003).
[CrossRef]

M. Sasaki, X. Mi, and K. Hane, “Standing wave detection and interferometer application using a photodiode thinner than optical wavelength,” Appl. Phys. Lett. 75, 2008–2010 (1999).
[CrossRef]

Silvertooth, E. W.

Stiebig, H.

H-J. Büchner, H. Stiebig, V. Mandryka, E. Bunte, and G. Jäger, “An optical standing-wave interferometer for displacement measurements,” Meas. Sci. Technol. 14, 311 (2003).
[CrossRef]

Tijssen, M.

Ulrich, R.

Wiener, O.

O. Wiener, “Stehende lichtwellen und die schwingungsrichtung polarisirten lichtes,” Ann. Phys. Chemie 276, 203–243 (1890).
[CrossRef]

Zeman, M.

Ann. Phys.

H. Jäger, “Ein neues beobachtumgsverfahrem für stehende lichtwellen,” Ann. Phys. 5, 280–296 (1939).

Ann. Phys. Chemie

O. Wiener, “Stehende lichtwellen und die schwingungsrichtung polarisirten lichtes,” Ann. Phys. Chemie 276, 203–243 (1890).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Carraresi, E. A. De Souza, D. A. B. Miller, W. Y. Jan, and J. E. Cunningham, “Wavelength-selective detector based on a quantum well in a standing wave,” Appl. Phys. Lett. 64, 134–137 (1994).
[CrossRef]

M. Sasaki, X. Mi, and K. Hane, “Standing wave detection and interferometer application using a photodiode thinner than optical wavelength,” Appl. Phys. Lett. 75, 2008–2010 (1999).
[CrossRef]

J. Opt. Soc. Am.

Meas. Sci. Technol.

H-J. Büchner, H. Stiebig, V. Mandryka, E. Bunte, and G. Jäger, “An optical standing-wave interferometer for displacement measurements,” Meas. Sci. Technol. 14, 311 (2003).
[CrossRef]

Y. Li, X. Mi, M. Sasaki, and K. Hane, “Precision optical displacement sensor based on ultra-thin film photodiode type optical interferometers,” Meas. Sci. Technol. 14, 479–483 (2003).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Michelson–Morley (left) and Sagnac (right) geometry for creating standing waves through a sensor.

Fig. 2.
Fig. 2.

External quantum efficiency (EQE) of both sensors as a function of wavelength: black line/dots: A; red line/circles: B.

Fig. 3.
Fig. 3.

Michelson–Morley geometry for creating standing waves through a sensor.

Fig. 4.
Fig. 4.

Responses of standing wave sensors placed in an optical standing wave created by the Michelson–Morley geometry (see Fig. 3) as function of sensor displacement. Black dots: sensor A, red circles: sensor B. The lines represent the fitted models. The estimated error bars have approximately the same size as the symbols.

Fig. 5.
Fig. 5.

Sagnac geometry for creating standing waves through a sensor.

Fig. 6.
Fig. 6.

Responses of standing wave sensors placed in an optical standing wave created by the Sagnac geometry (see Fig. 5) as function of sensor displacement. Black dots: sensor A, red circles: sensor B. The lines represent the fitted models. The estimated error bars have approximately the same size as the symbols.

Tables (1)

Tables Icon

Table 1. Design and Fitted Model Parameters for the Optical Standing Wave Sensors

Metrics