Abstract

We present a full-vectorial modal analysis of a segmented cladding fiber (SCF). The analysis is based on the H-field vectorial finite element method (VFEM) employing polar mesh geometry. Using this method, we have analyzed the circular SCF and the elliptical SCF. We have found that the birefringence of the circular SCF is very small (1.0×108). Birefringence of a highly elliptical SCF can be altered to some extent by the number of segments and duty cycle of segmentation in the segmented cladding. However, the change is not profound. The analysis shows that the circular SCF possesses low birefringence and that the segmented cladding does not add any significant birefringence in an elliptical fiber. This result strongly indicates that small deviations in the segmented cladding parameters arising from fabrication process do not significantly affect the birefringence of the fiber.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Rastogi and K. S. Chiang, “Analysis of segmented-cladding fiber by the radial-effective-index method,” J. Opt. Soc. Am. B 21, 258–265 (2004).
    [CrossRef]
  2. V. Rastogi and K. S. Chiang, “Propagation characteristics of a segmented cladding fiber,” Opt. Lett. 26, 491–492 (2001).
    [CrossRef]
  3. A. Millo, I. Naeh, and A. Katzir, “Single-mode segmented cladding fibers for middle infrared,” J. Lightwave Technol. 25, 2115–2121 (2007).
    [CrossRef]
  4. A. Yeung, P. L. Chu, G. D. Peng, K. S. Chiang, and Q. Liu, “Design and fabrication of polymer cross fiber for large-core single-mode operation,” J. Lightwave Technol. 27, 101–107 (2009).
    [CrossRef]
  5. J. Duan, C. Teng, K. Han, W. Wu, Q. Zhang, and K. S. Chiang, “Fabrication of segmented cladding fiber by bicomponent spinning,” Polym. Eng. Sci. 49, 1865–1870 (2009).
    [CrossRef]
  6. A. Agrawal, N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, “Golden spiral photonic crystal fiber: polarization and dispersion properties,” Opt. Lett. 33, 2716–2718 (2008).
    [CrossRef]
  7. I. K. Hwang, Y. H. Lee, K. Oh, and D. N. Payne, “High birefringence in elliptical hollow optical fiber,” Opt. Express 12, 1916–1923 (2004).
    [CrossRef]
  8. K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibres by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
    [CrossRef]
  9. N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
    [CrossRef]
  10. M. Koshiba and K. Saitoh, “Finite element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures,” Appl. Opt. 42, 6267–6275 (2003).
    [CrossRef]
  11. Y. C. Liu and Y. Lai, “Optical birefringence and polarization dependent loss of square and rectangular lattice holey fibers with elliptical air holes: numerical analysis,” Opt. Express 13, 225–235 (2005).
    [CrossRef]
  12. Z. Zhu and T. G. Brown, “Stress induced birefringence in microstructured optical fibers,” Opt. Lett. 28, 2306–2308 (2003).
    [CrossRef]
  13. B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optic waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
    [CrossRef]

2009

A. Yeung, P. L. Chu, G. D. Peng, K. S. Chiang, and Q. Liu, “Design and fabrication of polymer cross fiber for large-core single-mode operation,” J. Lightwave Technol. 27, 101–107 (2009).
[CrossRef]

J. Duan, C. Teng, K. Han, W. Wu, Q. Zhang, and K. S. Chiang, “Fabrication of segmented cladding fiber by bicomponent spinning,” Polym. Eng. Sci. 49, 1865–1870 (2009).
[CrossRef]

2008

A. Agrawal, N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, “Golden spiral photonic crystal fiber: polarization and dispersion properties,” Opt. Lett. 33, 2716–2718 (2008).
[CrossRef]

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

2007

2005

2004

2003

2001

1984

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optic waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
[CrossRef]

1981

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibres by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
[CrossRef]

Agrawal, A.

A. Agrawal, N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, “Golden spiral photonic crystal fiber: polarization and dispersion properties,” Opt. Lett. 33, 2716–2718 (2008).
[CrossRef]

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

Brown, T. G.

Chen, J.

Chiang, K. S.

Chu, P. L.

Davies, J. B.

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optic waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
[CrossRef]

Duan, J.

J. Duan, C. Teng, K. Han, W. Wu, Q. Zhang, and K. S. Chiang, “Fabrication of segmented cladding fiber by bicomponent spinning,” Polym. Eng. Sci. 49, 1865–1870 (2009).
[CrossRef]

Edahiro, T.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibres by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
[CrossRef]

Grattan, K. T. V.

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

A. Agrawal, N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, “Golden spiral photonic crystal fiber: polarization and dispersion properties,” Opt. Lett. 33, 2716–2718 (2008).
[CrossRef]

Han, K.

J. Duan, C. Teng, K. Han, W. Wu, Q. Zhang, and K. S. Chiang, “Fabrication of segmented cladding fiber by bicomponent spinning,” Polym. Eng. Sci. 49, 1865–1870 (2009).
[CrossRef]

Hosaka, T.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibres by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
[CrossRef]

Hwang, I. K.

Katzir, A.

Kejalakshmy, N.

A. Agrawal, N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, “Golden spiral photonic crystal fiber: polarization and dispersion properties,” Opt. Lett. 33, 2716–2718 (2008).
[CrossRef]

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

Koshiba, M.

Lai, Y.

Lee, Y. H.

Liu, Q.

Liu, Y. C.

Millo, A.

Naeh, I.

Oh, K.

Okamoto, K.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibres by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
[CrossRef]

Payne, D. N.

Peng, G. D.

Rahman, B. M. A.

A. Agrawal, N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, “Golden spiral photonic crystal fiber: polarization and dispersion properties,” Opt. Lett. 33, 2716–2718 (2008).
[CrossRef]

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optic waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
[CrossRef]

Rastogi, V.

Saitoh, K.

Teng, C.

J. Duan, C. Teng, K. Han, W. Wu, Q. Zhang, and K. S. Chiang, “Fabrication of segmented cladding fiber by bicomponent spinning,” Polym. Eng. Sci. 49, 1865–1870 (2009).
[CrossRef]

Wongcharoen, T.

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

Wu, W.

J. Duan, C. Teng, K. Han, W. Wu, Q. Zhang, and K. S. Chiang, “Fabrication of segmented cladding fiber by bicomponent spinning,” Polym. Eng. Sci. 49, 1865–1870 (2009).
[CrossRef]

Yeung, A.

Zhang, Q.

J. Duan, C. Teng, K. Han, W. Wu, Q. Zhang, and K. S. Chiang, “Fabrication of segmented cladding fiber by bicomponent spinning,” Polym. Eng. Sci. 49, 1865–1870 (2009).
[CrossRef]

Zhu, Z.

Appl. Opt.

Appl. Phys. B

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

IEEE J. Quantum Electron.

K. Okamoto, T. Hosaka, and T. Edahiro, “Stress analysis of optical fibres by a finite element method,” IEEE J. Quantum Electron. 17, 2123–2129 (1981).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Polym. Eng. Sci.

J. Duan, C. Teng, K. Han, W. Wu, Q. Zhang, and K. S. Chiang, “Fabrication of segmented cladding fiber by bicomponent spinning,” Polym. Eng. Sci. 49, 1865–1870 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Transverse cross-section of the SCF.

Fig. 2.
Fig. 2.

Finite element representation of a quarter section of the SCF.

Fig. 3.
Fig. 3.

Contour plot of the fundamental mode at two different wavelengths (450 and 1550 nm) for the parameters defined in Table 1.

Fig. 4.
Fig. 4.

Transverse cross-section of an elliptical SCF.

Fig. 5.
Fig. 5.

Effect of mesh parameters on the convergence of effective indices of modes and birefringence for the parameters given by Eq. (2) at λ=1550nm.

Fig. 6.
Fig. 6.

Effect of duty cycle (γ) on birefringence of elliptical SCF.

Fig. 7.
Fig. 7.

Effect of number of segments (N) on birefringence of the elliptical SCF.

Fig. 8.
Fig. 8.

Spectral variation of the birefringence of the elliptical SCF.

Tables (1)

Tables Icon

Table 1. Comparison of Mode Indices of the Segmented Cladding Fiber (SCF) Calculated by Radial Effective Index Method (REIM) and Finite Element Method (FEM) at Different Wavelengths for the Fiber Parameters: a=10μm, b=30μm, Δ=0.0035, N=8, and γ=0.50

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω2=((×H⃗)*ϵ^1(×H⃗)dΩ+(α/ϵ0)(·H⃗)*(·H⃗)dΩ)H⃗*·μ^H⃗dΩ
n2=1.444388,Δ=1.6%,a=3.75μm,b=1.25μm,dcl=6.25μm,dscl=20μm,dex=5μm,eclad=0.87,Nangular=180andNradial=250.

Metrics