Abstract

A configuration of hole patterned electrode liquid crystal microlens array with an ultrathin glass slab was fabricated. To reduce the fringing electric field effect and avoid the occurrence of disclination lines, an ultrathin glass slab was introduced between the patterned electrode and liquid crystal layer. The glass slab thickness played an important role in effecting the optical performance of the liquid crystal microlens array. An optimum thickness of 30 μm was selected employing numerical simulation method. Using this method, we demonstrated a microlens array that greatly improved the phase profile and focus power. The dynamic focal range of the liquid crystal microlens array may extend from <1.2mm to >8mm and the minimum diameter of the focus spot could be as small as 15 µm.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Liquid-crystal microlens with a beam-steering function

Shin Masuda, Sounosuke Takahashi, Toshiaki Nose, Susumu Sato, and Hiromasa Ito
Appl. Opt. 36(20) 4772-4778 (1997)

Liquid-crystal lens with a focal length that is variable in a wide range

Mao Ye, Bin Wang, and Susumu Sato
Appl. Opt. 43(35) 6407-6412 (2004)

Electrically tunable lens based on a dual-frequency nematic liquid crystal

Oleg Pishnyak, Susumu Sato, and Oleg D. Lavrentovich
Appl. Opt. 45(19) 4576-4582 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription