Abstract

A configuration of hole patterned electrode liquid crystal microlens array with an ultrathin glass slab was fabricated. To reduce the fringing electric field effect and avoid the occurrence of disclination lines, an ultrathin glass slab was introduced between the patterned electrode and liquid crystal layer. The glass slab thickness played an important role in effecting the optical performance of the liquid crystal microlens array. An optimum thickness of 30 μm was selected employing numerical simulation method. Using this method, we demonstrated a microlens array that greatly improved the phase profile and focus power. The dynamic focal range of the liquid crystal microlens array may extend from <1.2mm to >8mm and the minimum diameter of the focus spot could be as small as 15 µm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid crystal microlens array by printing,” Opt. Express 17, 4317–4323 (2009).
    [CrossRef]
  2. C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid crystal microlens with hybrid alignment,” J. Opt. 8, s365–s369 (2006).
    [CrossRef]
  3. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2003).
    [CrossRef]
  4. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual frequency nematic liquid crystal,” Appl. Opt. 45, 4576–4582 (2006).
    [CrossRef]
  5. H. W. Ren, Y. H. Fan, and S. T. Wu, “Liquid crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608–1610 (2004).
    [CrossRef]
  6. S. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
    [CrossRef]
  7. S. Sato, “Application of liquid crystal to variable focusing lenses,” Opt. Rev. 6, 471–485 (1999).
    [CrossRef]
  8. H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tenability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
    [CrossRef]
  9. C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination lines in liquid crystal lens with a large aperture by means of polymer stabilization,” Opt. Express 19, 14999–15008 (2011).
    [CrossRef]
  10. T. Nose, S. Masuda, and S. Sato, “Effects of polymer content in a liquid crystal microlens,” Opt. Lett. 22, 351–353 (1997).
    [CrossRef]
  11. S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlens with an asymmetric electrode structure,” Jpn. J. Appl. Phys. 41, 1482–1488 (2002).
    [CrossRef]
  12. G. E. Newskaja and A. Gwozdarev, “Homeotropical-aligned liquid crystal microlens properties,” Proc. SPIE 2731, 214–219 (1996).
    [CrossRef]
  13. A. Y. Gvosdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid crystal microlens with homeotropic orientation,” J. Opt. Technol. 68, 682–686 (2001).
    [CrossRef]
  14. M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
    [CrossRef]
  15. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
    [CrossRef]
  16. M. Ye, B. Wang, and S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
    [CrossRef]
  17. G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Technol. 75, 563–573 (2008).
    [CrossRef]
  18. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
    [CrossRef]
  19. Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
    [CrossRef]
  20. M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722(2006).
    [CrossRef]
  21. X. H. Wang, B. Wang, P. J. Bos, and P. F. McManamon, “Modeling and design of an optimized liquid crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
    [CrossRef]
  22. X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007).
    [CrossRef]
  23. C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization insensitive multi-electrode GRIN lens with a blue phase liquid crystal,” Opt. Express 19, 17402–17407 (2011).
    [CrossRef]
  24. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable lens using nano-scale polymer dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
    [CrossRef]
  25. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue phase liquid crystal,” Opt. Express 19, 8045–8050 (2011).
    [CrossRef]
  26. M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92, 061102 (2008).
    [CrossRef]
  27. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
    [CrossRef]
  28. S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
    [CrossRef]
  29. S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
    [CrossRef]
  30. Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156 (2005).
    [CrossRef]

2011

2009

2008

G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Technol. 75, 563–573 (2008).
[CrossRef]

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

2007

X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007).
[CrossRef]

H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tenability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
[CrossRef]

2006

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid crystal microlens with hybrid alignment,” J. Opt. 8, s365–s369 (2006).
[CrossRef]

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual frequency nematic liquid crystal,” Appl. Opt. 45, 4576–4582 (2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722(2006).
[CrossRef]

2005

X. H. Wang, B. Wang, P. J. Bos, and P. F. McManamon, “Modeling and design of an optimized liquid crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[CrossRef]

Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[CrossRef]

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156 (2005).
[CrossRef]

2004

2003

M. Ye, B. Wang, and S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2003).
[CrossRef]

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable lens using nano-scale polymer dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

2002

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlens with an asymmetric electrode structure,” Jpn. J. Appl. Phys. 41, 1482–1488 (2002).
[CrossRef]

2001

1999

S. Sato, “Application of liquid crystal to variable focusing lenses,” Opt. Rev. 6, 471–485 (1999).
[CrossRef]

1997

1996

G. E. Newskaja and A. Gwozdarev, “Homeotropical-aligned liquid crystal microlens properties,” Proc. SPIE 2731, 214–219 (1996).
[CrossRef]

1992

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

1991

S. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

1988

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

Anderson, J. E.

X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007).
[CrossRef]

Bos, P. J.

X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007).
[CrossRef]

X. H. Wang, B. Wang, P. J. Bos, and P. F. McManamon, “Modeling and design of an optimized liquid crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[CrossRef]

Chang, C. A.

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid crystal microlens with hybrid alignment,” J. Opt. 8, s365–s369 (2006).
[CrossRef]

Cheng, C. C.

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid crystal microlens with hybrid alignment,” J. Opt. 8, s365–s369 (2006).
[CrossRef]

Choi, W. K.

Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[CrossRef]

Choi, Y.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2003).
[CrossRef]

Dabrowski, R.

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Dai, H. T.

Fan, Y. H.

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156 (2005).
[CrossRef]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

H. W. Ren, Y. H. Fan, and S. T. Wu, “Liquid crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608–1610 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable lens using nano-scale polymer dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Fang-Chiang, K. H.

Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[CrossRef]

Fox, D. W.

Gauza, S.

Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[CrossRef]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Ge, Z.

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

Gvosdarev, A. Y.

Gwozdarev, A.

G. E. Newskaja and A. Gwozdarev, “Homeotropical-aligned liquid crystal microlens properties,” Proc. SPIE 2731, 214–219 (1996).
[CrossRef]

Hsu, C. J.

Jiao, M.

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

Kim, J. H.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2003).
[CrossRef]

Lavrentovich, O. D.

Lee, C. T.

Lee, S. D.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2003).
[CrossRef]

Li, Y.

Liang, X.

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156 (2005).
[CrossRef]

Lin, H. Y.

Lin, Y. H.

Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[CrossRef]

Liu, C. H.

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid crystal microlens with hybrid alignment,” J. Opt. 8, s365–s369 (2006).
[CrossRef]

Liu, Y. J.

Luo, D.

Masuda, S.

T. Nose, S. Masuda, and S. Sato, “Effects of polymer content in a liquid crystal microlens,” Opt. Lett. 22, 351–353 (1997).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

S. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

McManamon, P. F.

X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007).
[CrossRef]

X. H. Wang, B. Wang, P. J. Bos, and P. F. McManamon, “Modeling and design of an optimized liquid crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[CrossRef]

Miranda, F. A.

X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007).
[CrossRef]

Nevskaya, G. E.

Newskaja, G. E.

G. E. Newskaja and A. Gwozdarev, “Homeotropical-aligned liquid crystal microlens properties,” Proc. SPIE 2731, 214–219 (1996).
[CrossRef]

Nose, S.

S. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

Nose, T.

T. Nose, S. Masuda, and S. Sato, “Effects of polymer content in a liquid crystal microlens,” Opt. Lett. 22, 351–353 (1997).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

Ouchi, K.

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlens with an asymmetric electrode structure,” Jpn. J. Appl. Phys. 41, 1482–1488 (2002).
[CrossRef]

Park, J. H.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2003).
[CrossRef]

Pishnyak, O.

Pouch, J. J.

X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007).
[CrossRef]

Ren, H.

Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable lens using nano-scale polymer dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Ren, H. W.

H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tenability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
[CrossRef]

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156 (2005).
[CrossRef]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

H. W. Ren, Y. H. Fan, and S. T. Wu, “Liquid crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608–1610 (2004).
[CrossRef]

Sato, S.

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual frequency nematic liquid crystal,” Appl. Opt. 45, 4576–4582 (2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722(2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlens with an asymmetric electrode structure,” Jpn. J. Appl. Phys. 41, 1482–1488 (2002).
[CrossRef]

S. Sato, “Application of liquid crystal to variable focusing lenses,” Opt. Rev. 6, 471–485 (1999).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Effects of polymer content in a liquid crystal microlens,” Opt. Lett. 22, 351–353 (1997).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

S. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

Seed, A. J.

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Sheu, C. R.

Song, Q.

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

Sun, X. W.

Tomilin, M. G.

Wang, B.

X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722(2006).
[CrossRef]

X. H. Wang, B. Wang, P. J. Bos, and P. F. McManamon, “Modeling and design of an optimized liquid crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

Wang, H. Y.

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156 (2005).
[CrossRef]

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Wang, X. H.

X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007).
[CrossRef]

X. H. Wang, B. Wang, P. J. Bos, and P. F. McManamon, “Modeling and design of an optimized liquid crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[CrossRef]

Wen, C. H.

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Wu, B.

Wu, C. S.

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

Wu, S. T.

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue phase liquid crystal,” Opt. Express 19, 8045–8050 (2011).
[CrossRef]

C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization insensitive multi-electrode GRIN lens with a blue phase liquid crystal,” Opt. Express 19, 17402–17407 (2011).
[CrossRef]

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tenability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
[CrossRef]

Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[CrossRef]

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156 (2005).
[CrossRef]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

H. W. Ren, Y. H. Fan, and S. T. Wu, “Liquid crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608–1610 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable lens using nano-scale polymer dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

Yanase, S.

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlens with an asymmetric electrode structure,” Jpn. J. Appl. Phys. 41, 1482–1488 (2002).
[CrossRef]

Ye, M.

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722(2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

Yeh, J. A.

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid crystal microlens with hybrid alignment,” J. Opt. 8, s365–s369 (2006).
[CrossRef]

Yudin, I. B.

Zhu, X.

Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable lens using nano-scale polymer dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

J. Appl. Phys.

X. H. Wang, B. Wang, P. J. Bos, and P. F. McManamon, “Modeling and design of an optimized liquid crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[CrossRef]

J. Disp. Technol.

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156 (2005).
[CrossRef]

J. Opt.

C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid crystal microlens with hybrid alignment,” J. Opt. 8, s365–s369 (2006).
[CrossRef]

J. Opt. Technol.

Jpn. J. Appl. Phys.

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[CrossRef]

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlens with an asymmetric electrode structure,” Jpn. J. Appl. Phys. 41, 1482–1488 (2002).
[CrossRef]

S. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Opt. Commun.

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722(2006).
[CrossRef]

Opt. Eng.

X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2003).
[CrossRef]

Opt. Rev.

S. Sato, “Application of liquid crystal to variable focusing lenses,” Opt. Rev. 6, 471–485 (1999).
[CrossRef]

Proc. SPIE

G. E. Newskaja and A. Gwozdarev, “Homeotropical-aligned liquid crystal microlens properties,” Proc. SPIE 2731, 214–219 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram and fabrication procedure for the hole patterned electrode liquid crystal microlens array with an ultrathin glass slab.

Fig. 2.
Fig. 2.

Isopotential distribution (left) and liquid crystal director tilt angle distribution (right) in one LC cell unit with different thicknesses of glass slab: (a) 0 μm, (b) 18 μm, (c) 24 μm, (d) 50 μm. The applied voltage was 10 V . The associated parameters were as follows: the pre-tilt angle was 100mrad, and the relative dielectric constant of the glass slab was 4.

Fig. 3.
Fig. 3.

Experimental setup for characterizing the LC microlens array: LP, linear polarizer; ND, neutral density filter; WP, λ/2 wave plate; L1, objective imaging lens.

Fig. 4.
Fig. 4.

Interference pattern at the same dimension with glass slab thicknesses (a) 0, (b) 30, and (c) 50 μm and the corresponding focus array in the focal plane for thicknesses (d) 0, (e) 30, and (f) 50 μm. The applied voltage was 7, 7.3, and 10 Vpp, respectively.

Fig. 5.
Fig. 5.

Interference pattern of the LC microlens array under different voltages: (a) 2.9, (b) 4, (c) 6, (d) 10, (e) 13, and (f) 19.7 Vpp.

Fig. 6.
Fig. 6.

(a) Focus arrays under applied voltage of 11.3 Vpp and (b) the normalized intensity profile at different voltages on the focal plane.

Fig. 7.
Fig. 7.

Voltage-dependent focal length of the liquid crystal microlens array.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

fG=12k11(·n)2+12k22(n·×n)2+12k33(n××n)212(D·E),
·D=0.

Metrics