Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generalized eikonal approximation for fast retrieval of particle size distribution in spectral extinction technique

Not Accessible

Your library or personal account may give you access

Abstract

In retrieving particle size distribution from spectral extinction data, a critical issue is the calculation of extinction efficiency, which affects the accuracy and rapidity of the whole retrieval. The generalized eikonal approximation (GEA) method, used as an alternative to the rigorous Mie theory, is introduced for retrieval of the unparameterized shape-independent particle size distribution (PSD). To compute the extinction efficiency more efficiently, the combination of GEA method and Mie theory is adopted in this paper, which not only extends the applicable range of the approximation method but also improves the speed of the whole retrieval. Within the framework of the combined approximation method, the accuracy and limitations of the retrieval are investigated. Moreover, the retrieval time and memory requirement are also discussed. Both simulations and experimental results show that the combined approximation method can be successfully applied to retrieval of PSD when the refractive index is within the validity range. The retrieval results we present demonstrate the high reliability and stability of the method. By using this method, we find the complexity and computation time of the retrieval are significantly reduced and the memory resources can also be saved effectively, thus making this method more suitable for online particle sizing.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Numerical study of particle-size distributions retrieved from angular light-scattering data using an evolution strategy with the Fraunhofer approximation

Javier Vargas-Ubera, Juan Jaime Sánchez-Escobar, J. Félix Aguilar, and David Michel Gale
Appl. Opt. 46(17) 3602-3610 (2007)

Retrieval of particle size distribution in the dependent model using the moment method

Xiaogang Sun, Hong Tang, and Jingmin Dai
Opt. Express 15(18) 11507-11516 (2007)

Inversion method based on stochastic optimization for particle sizing

Juan Jaime Sánchez-Escobar, Liliana Ibeth Barbosa-Santillán, Javier Vargas-Ubera, and Félix Aguilar-Valdés
Appl. Opt. 55(22) 5806-5813 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved