Abstract

Dielectric elastomers with low elastic stiffness and high dielectric constant are smart materials that produce large strains (up to 300%) and belong to the group of electroactive polymers. Dielectric elastomer actuators are made from films of dielectric elastomers coated on both sides with compliant electrode material. Poly(3,4-ethylenedioxythiophene) (PEDOT), which is known as a transparent conducting polymer, has been widely used as an interfacial layer or polymer electrode in polymer electronic devices. In this study, we propose the transparent dielectric elastomer as a material of actuator driving variable-focus lens system using PEDOT as a transparent electrode. The variable-focus lens module has light transmittance up to 70% and maximum displacement up to 450. When voltage is applied to the fabricated lens module, optical focal length is changed. We anticipate our research to be a starting point for new model of variable-focus lens system. This system could find applications in portable devices, such as digital cameras, camcorder, and cell phones.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010).
    [CrossRef]
  2. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
    [CrossRef]
  3. S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. M. Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48, 2308–2314 (2009).
    [CrossRef]
  4. D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
    [CrossRef]
  5. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1 khz bandwidth,” Opt. Express 12, 2138–2149 (2004).
    [CrossRef]
  6. Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges (SPIE press, 2001).
  7. K. Kim and S. Tadokoro, Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors (Springer, 2007).
  8. E. Smela, O. Ingana¨s, and I. Lundstro¨m, “Controlled folding of micrometer-size structures,” Science 268, 1735–1738 (1995).
    [CrossRef]
  9. R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
    [CrossRef]
  10. L. Qu, Q. Peng, L. Dai, G. Spinks, G. Wallace, and R. Baughman, “Carbon nanotube electroactive polymer materials: Opportunities and challenges,” MRS Bulletin 33, 215–224 (2008).
    [CrossRef]
  11. J. Nam, H. Choi, Y. Tak, and K. Kim, “Novel electroactive, silicate nanocomposites prepared to be used as actuators and artificial muscles,” Sens. Actuators A 105, 83–90 (2003).
    [CrossRef]
  12. M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).
  13. M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006).
    [CrossRef]
  14. M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, and Y. Lee, “An electroactive conducting polymer actuator based on nbr/rtil solid polymer electrolyte,” Smart Mater. Struc. 16, S237 (2007).
    [CrossRef]
  15. N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
    [CrossRef]
  16. F. Vidal, C. Plesse, D. Teyssié, and C. Chevrot, “Long-life air working conducting semi-ipn/ionic liquid based actuator,” Synthetic Metals 142, 287–291 (2004).
    [CrossRef]
  17. S.-M. Kim and K. J. Kim, “Palladium buffer-layered high performance ionic polymer–metal composites,” Smart Mater. Struc. 17, 035011 (2008).
    [CrossRef]
  18. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287, 836–839 (2000).
    [CrossRef]
  19. G. Kofod, P. Sommer-Larsen, R. Kornbluh, and R. Pelrine, “Actuation response of polyacrylate dielectric elastomers,” J. Intell. Mater. Syst. Struct. 14, 787–793 (2003).
    [CrossRef]
  20. R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators A 64, 77–85(1998).
    [CrossRef]
  21. R. Pelrine, R. Kornbluh, and G. Kofod, “High-strain actuator materials based on dielectric elastomers,” Adv. Mater. 12, 1223–1225 (2000).
    [CrossRef]
  22. H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.
  23. H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.
  24. G. Kofod and P. Sommer-Larsen, “Silicone dielectric elastomer actuators: Finite-elasticity model of actuation,” Sens. Actuators A 122, 273–283 (2005).
    [CrossRef]
  25. B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
    [CrossRef]
  26. H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008).
    [CrossRef]
  27. I. Shimizu, K. Kikuchi, and S. Tsuchitani, “Variable-focal length lens using IPMC,” in ICCAS-SICE (IEEE, 2009), pp. 4752–4756.
  28. V. Vunder, A. Punning, and A. Aabloo, “Variable-focal lens using electroactive polymer actuator,” SPIE Reviews 7977, 79771E (2011).
    [CrossRef]
  29. M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion-implanted eaps,” SPIE Reviews 7642, 76422K(2010).
    [CrossRef]
  30. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,” Adv. Mater. 12, 481–494 (2000).
    [CrossRef]
  31. T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008).
    [CrossRef]
  32. D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009).
    [CrossRef]
  33. K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009).
    [CrossRef]
  34. R. A. Guerrero, M. W. C. Sze, and J. R. A. Batiller, “Deformable curvature and beam scanning with an elastomeric concave grating actuated by a shape memory alloy,” Appl. Opt. 49, 3634–3639 (2010).
    [CrossRef]
  35. H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
    [CrossRef]
  36. H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.
  37. F. Beer, E. Johnston, and J. DeWolf, Mechanics of Materials (McGraw-Hill, 2006).
  38. A. Sarac, G. Sönmez, and F. Cebeci, “Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on carbon fibre microelectrodes,” J. Appl. Electrochem. 33, 295–301 (2003).
    [CrossRef]
  39. C. Kvarnström, H. Neugebauer, A. Ivaska, and N. Sariciftci, “Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (atr-ftir) study,” J. Mol. Struct. 521, 271–277 (2000).
    [CrossRef]
  40. L. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Inganäs, “Anisotropic optical properties of doped poly(3,4-ethylenedioxythiophene),” Synth. Met. 101, 198–199(1999).
    [CrossRef]
  41. J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, “Electrostrictive polymer nanocomposites exhibiting tunable electrical properties,” Smart Mater. Struc. 14, 87–90 (2005).
    [CrossRef]

2011

V. Vunder, A. Punning, and A. Aabloo, “Variable-focal lens using electroactive polymer actuator,” SPIE Reviews 7977, 79771E (2011).
[CrossRef]

2010

M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion-implanted eaps,” SPIE Reviews 7642, 76422K(2010).
[CrossRef]

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010).
[CrossRef]

R. A. Guerrero, M. W. C. Sze, and J. R. A. Batiller, “Deformable curvature and beam scanning with an elastomeric concave grating actuated by a shape memory alloy,” Appl. Opt. 49, 3634–3639 (2010).
[CrossRef]

2009

S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. M. Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48, 2308–2314 (2009).
[CrossRef]

D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009).
[CrossRef]

K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009).
[CrossRef]

2008

T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008).
[CrossRef]

L. Qu, Q. Peng, L. Dai, G. Spinks, G. Wallace, and R. Baughman, “Carbon nanotube electroactive polymer materials: Opportunities and challenges,” MRS Bulletin 33, 215–224 (2008).
[CrossRef]

N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
[CrossRef]

S.-M. Kim and K. J. Kim, “Palladium buffer-layered high performance ionic polymer–metal composites,” Smart Mater. Struc. 17, 035011 (2008).
[CrossRef]

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008).
[CrossRef]

2007

M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, and Y. Lee, “An electroactive conducting polymer actuator based on nbr/rtil solid polymer electrolyte,” Smart Mater. Struc. 16, S237 (2007).
[CrossRef]

M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).

H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
[CrossRef]

2006

M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006).
[CrossRef]

2005

G. Kofod and P. Sommer-Larsen, “Silicone dielectric elastomer actuators: Finite-elasticity model of actuation,” Sens. Actuators A 122, 273–283 (2005).
[CrossRef]

J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, “Electrostrictive polymer nanocomposites exhibiting tunable electrical properties,” Smart Mater. Struc. 14, 87–90 (2005).
[CrossRef]

2004

2003

J. Nam, H. Choi, Y. Tak, and K. Kim, “Novel electroactive, silicate nanocomposites prepared to be used as actuators and artificial muscles,” Sens. Actuators A 105, 83–90 (2003).
[CrossRef]

G. Kofod, P. Sommer-Larsen, R. Kornbluh, and R. Pelrine, “Actuation response of polyacrylate dielectric elastomers,” J. Intell. Mater. Syst. Struct. 14, 787–793 (2003).
[CrossRef]

A. Sarac, G. Sönmez, and F. Cebeci, “Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on carbon fibre microelectrodes,” J. Appl. Electrochem. 33, 295–301 (2003).
[CrossRef]

2000

C. Kvarnström, H. Neugebauer, A. Ivaska, and N. Sariciftci, “Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (atr-ftir) study,” J. Mol. Struct. 521, 271–277 (2000).
[CrossRef]

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,” Adv. Mater. 12, 481–494 (2000).
[CrossRef]

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287, 836–839 (2000).
[CrossRef]

R. Pelrine, R. Kornbluh, and G. Kofod, “High-strain actuator materials based on dielectric elastomers,” Adv. Mater. 12, 1223–1225 (2000).
[CrossRef]

1999

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

L. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Inganäs, “Anisotropic optical properties of doped poly(3,4-ethylenedioxythiophene),” Synth. Met. 101, 198–199(1999).
[CrossRef]

1998

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators A 64, 77–85(1998).
[CrossRef]

1995

E. Smela, O. Ingana¨s, and I. Lundstro¨m, “Controlled folding of micrometer-size structures,” Science 268, 1735–1738 (1995).
[CrossRef]

Aabloo, A.

V. Vunder, A. Punning, and A. Aabloo, “Variable-focal lens using electroactive polymer actuator,” SPIE Reviews 7977, 79771E (2011).
[CrossRef]

Arwin, H.

L. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Inganäs, “Anisotropic optical properties of doped poly(3,4-ethylenedioxythiophene),” Synth. Met. 101, 198–199(1999).
[CrossRef]

Bar-Cohen, Y.

Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges (SPIE press, 2001).

Barisci, J.

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Barrera-Rivera, K. A.

Batiller, J. R. A.

Baughman, R.

L. Qu, Q. Peng, L. Dai, G. Spinks, G. Wallace, and R. Baughman, “Carbon nanotube electroactive polymer materials: Opportunities and challenges,” MRS Bulletin 33, 215–224 (2008).
[CrossRef]

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Beer, F.

F. Beer, E. Johnston, and J. DeWolf, Mechanics of Materials (McGraw-Hill, 2006).

Berdichevsky, Y.

Calixto, S.

Carlsson, F.

L. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Inganäs, “Anisotropic optical properties of doped poly(3,4-ethylenedioxythiophene),” Synth. Met. 101, 198–199(1999).
[CrossRef]

Cebeci, F.

A. Sarac, G. Sönmez, and F. Cebeci, “Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on carbon fibre microelectrodes,” J. Appl. Electrochem. 33, 295–301 (2003).
[CrossRef]

Chevrot, C.

F. Vidal, C. Plesse, D. Teyssié, and C. Chevrot, “Long-life air working conducting semi-ipn/ionic liquid based actuator,” Synthetic Metals 142, 287–291 (2004).
[CrossRef]

Cho, M.

M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).

M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006).
[CrossRef]

Cho, M. H.

D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009).
[CrossRef]

Cho, M. S.

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, and Y. Lee, “An electroactive conducting polymer actuator based on nbr/rtil solid polymer electrolyte,” Smart Mater. Struc. 16, S237 (2007).
[CrossRef]

Choi, H.

M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).

M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006).
[CrossRef]

J. Nam, H. Choi, Y. Tak, and K. Kim, “Novel electroactive, silicate nanocomposites prepared to be used as actuators and artificial muscles,” Sens. Actuators A 105, 83–90 (2003).
[CrossRef]

H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.

H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.

Choi, H. R.

N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
[CrossRef]

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, and Y. Lee, “An electroactive conducting polymer actuator based on nbr/rtil solid polymer electrolyte,” Smart Mater. Struc. 16, S237 (2007).
[CrossRef]

H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
[CrossRef]

J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, “Electrostrictive polymer nanocomposites exhibiting tunable electrical properties,” Smart Mater. Struc. 14, 87–90 (2005).
[CrossRef]

Choi, N.-J.

H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008).
[CrossRef]

Chuc, N. H.

N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
[CrossRef]

H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
[CrossRef]

Cui, C.

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Dai, L.

L. Qu, Q. Peng, L. Dai, G. Spinks, G. Wallace, and R. Baughman, “Carbon nanotube electroactive polymer materials: Opportunities and challenges,” MRS Bulletin 33, 215–224 (2008).
[CrossRef]

DeWolf, J.

F. Beer, E. Johnston, and J. DeWolf, Mechanics of Materials (McGraw-Hill, 2006).

Eom, Y.-S.

K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009).
[CrossRef]

Freitag, D.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,” Adv. Mater. 12, 481–494 (2000).
[CrossRef]

Groenendaal, L.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,” Adv. Mater. 12, 481–494 (2000).
[CrossRef]

Guerrero, R. A.

Hashimoto, K.

Heo, S.

J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, “Electrostrictive polymer nanocomposites exhibiting tunable electrical properties,” Smart Mater. Struc. 14, 87–90 (2005).
[CrossRef]

Hwang, S. D.

J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, “Electrostrictive polymer nanocomposites exhibiting tunable electrical properties,” Smart Mater. Struc. 14, 87–90 (2005).
[CrossRef]

Ingana¨s, O.

E. Smela, O. Ingana¨s, and I. Lundstro¨m, “Controlled folding of micrometer-size structures,” Science 268, 1735–1738 (1995).
[CrossRef]

Inganäs, O.

L. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Inganäs, “Anisotropic optical properties of doped poly(3,4-ethylenedioxythiophene),” Synth. Met. 101, 198–199(1999).
[CrossRef]

Iqbal, Z.

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Ishikawa, M.

Ivaska, A.

C. Kvarnström, H. Neugebauer, A. Ivaska, and N. Sariciftci, “Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (atr-ftir) study,” J. Mol. Struct. 521, 271–277 (2000).
[CrossRef]

Jang, K.

D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009).
[CrossRef]

Jang, K.-S.

K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009).
[CrossRef]

Jaschinski, O.

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Jeon, J.

H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.

Jeong, H.-S.

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

Johansson, T.

L. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Inganäs, “Anisotropic optical properties of doped poly(3,4-ethylenedioxythiophene),” Synth. Met. 101, 198–199(1999).
[CrossRef]

Johnston, E.

F. Beer, E. Johnston, and J. DeWolf, Mechanics of Materials (McGraw-Hill, 2006).

Jonas, F.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,” Adv. Mater. 12, 481–494 (2000).
[CrossRef]

Joseph, J.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287, 836–839 (2000).
[CrossRef]

Joseph, J. P.

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators A 64, 77–85(1998).
[CrossRef]

Jung, H.

H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008).
[CrossRef]

Jung, H. S.

H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
[CrossRef]

Jung, H.-C.

K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009).
[CrossRef]

Jung, K.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.

H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.

Jung, S.

H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008).
[CrossRef]

Justis, N.

Kang, S.-J.

D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009).
[CrossRef]

Kertesz, M.

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Kikuchi, K.

I. Shimizu, K. Kikuchi, and S. Tsuchitani, “Variable-focal length lens using IPMC,” in ICCAS-SICE (IEEE, 2009), pp. 4752–4756.

Kim, B.-C.

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

Kim, D.

N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
[CrossRef]

Kim, D. O.

K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009).
[CrossRef]

D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009).
[CrossRef]

Kim, D.-O.

T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008).
[CrossRef]

Kim, H.

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
[CrossRef]

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.

Kim, K.

J. Nam, H. Choi, Y. Tak, and K. Kim, “Novel electroactive, silicate nanocomposites prepared to be used as actuators and artificial muscles,” Sens. Actuators A 105, 83–90 (2003).
[CrossRef]

K. Kim and S. Tadokoro, Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors (Springer, 2007).

Kim, K. J.

S.-M. Kim and K. J. Kim, “Palladium buffer-layered high performance ionic polymer–metal composites,” Smart Mater. Struc. 17, 035011 (2008).
[CrossRef]

J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, “Electrostrictive polymer nanocomposites exhibiting tunable electrical properties,” Smart Mater. Struc. 14, 87–90 (2005).
[CrossRef]

Kim, S.-M.

S.-M. Kim and K. J. Kim, “Palladium buffer-layered high performance ionic polymer–metal composites,” Smart Mater. Struc. 17, 035011 (2008).
[CrossRef]

Kofod, G.

G. Kofod and P. Sommer-Larsen, “Silicone dielectric elastomer actuators: Finite-elasticity model of actuation,” Sens. Actuators A 122, 273–283 (2005).
[CrossRef]

G. Kofod, P. Sommer-Larsen, R. Kornbluh, and R. Pelrine, “Actuation response of polyacrylate dielectric elastomers,” J. Intell. Mater. Syst. Struct. 14, 787–793 (2003).
[CrossRef]

R. Pelrine, R. Kornbluh, and G. Kofod, “High-strain actuator materials based on dielectric elastomers,” Adv. Mater. 12, 1223–1225 (2000).
[CrossRef]

Koo, J.

N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
[CrossRef]

M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).

M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006).
[CrossRef]

H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.

Koo, J. C.

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, and Y. Lee, “An electroactive conducting polymer actuator based on nbr/rtil solid polymer electrolyte,” Smart Mater. Struc. 16, S237 (2007).
[CrossRef]

H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
[CrossRef]

Kornbluh, R.

G. Kofod, P. Sommer-Larsen, R. Kornbluh, and R. Pelrine, “Actuation response of polyacrylate dielectric elastomers,” J. Intell. Mater. Syst. Struct. 14, 787–793 (2003).
[CrossRef]

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287, 836–839 (2000).
[CrossRef]

R. Pelrine, R. Kornbluh, and G. Kofod, “High-strain actuator materials based on dielectric elastomers,” Adv. Mater. 12, 1223–1225 (2000).
[CrossRef]

Kornbluh, R. D.

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators A 64, 77–85(1998).
[CrossRef]

Kvarnström, C.

C. Kvarnström, H. Neugebauer, A. Ivaska, and N. Sariciftci, “Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (atr-ftir) study,” J. Mol. Struct. 521, 271–277 (2000).
[CrossRef]

Lee, H.-K.

H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008).
[CrossRef]

Lee, J. H.

J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, “Electrostrictive polymer nanocomposites exhibiting tunable electrical properties,” Smart Mater. Struc. 14, 87–90 (2005).
[CrossRef]

Lee, J.-H.

D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009).
[CrossRef]

Lee, P.-C.

D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009).
[CrossRef]

Lee, S.

H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008).
[CrossRef]

H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.

H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.

Lee, T.-W.

K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009).
[CrossRef]

T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008).
[CrossRef]

Lee, Y.

T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008).
[CrossRef]

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
[CrossRef]

M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, and Y. Lee, “An electroactive conducting polymer actuator based on nbr/rtil solid polymer electrolyte,” Smart Mater. Struc. 16, S237 (2007).
[CrossRef]

M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).

H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
[CrossRef]

M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006).
[CrossRef]

Lien, V.

Lo, Y.-H.

Lundstro¨m, I.

E. Smela, O. Ingana¨s, and I. Lundstro¨m, “Controlled folding of micrometer-size structures,” Science 268, 1735–1738 (1995).
[CrossRef]

Maeda, R.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.

Mazzoldi, A.

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Nam, J.

M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).

M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006).
[CrossRef]

J. Nam, H. Choi, Y. Tak, and K. Kim, “Novel electroactive, silicate nanocomposites prepared to be used as actuators and artificial muscles,” Sens. Actuators A 105, 83–90 (2003).
[CrossRef]

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.

H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.

Nam, J. D.

M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, and Y. Lee, “An electroactive conducting polymer actuator based on nbr/rtil solid polymer electrolyte,” Smart Mater. Struc. 16, S237 (2007).
[CrossRef]

H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
[CrossRef]

Nam, J.-D.

D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009).
[CrossRef]

K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009).
[CrossRef]

N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
[CrossRef]

T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008).
[CrossRef]

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, “Electrostrictive polymer nanocomposites exhibiting tunable electrical properties,” Smart Mater. Struc. 14, 87–90 (2005).
[CrossRef]

Neugebauer, H.

C. Kvarnström, H. Neugebauer, A. Ivaska, and N. Sariciftci, “Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (atr-ftir) study,” J. Mol. Struct. 521, 271–277 (2000).
[CrossRef]

Nguyen, H. C.

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

Nguyen, N.-T.

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010).
[CrossRef]

Niklaus, M.

M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion-implanted eaps,” SPIE Reviews 7642, 76422K(2010).
[CrossRef]

Oh, Y.-S.

K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009).
[CrossRef]

Oku, H.

Park, J.

N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
[CrossRef]

H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
[CrossRef]

Park, J. J.

T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008).
[CrossRef]

Park, K.-H.

H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008).
[CrossRef]

Pei, Q.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287, 836–839 (2000).
[CrossRef]

Pelrine, R.

G. Kofod, P. Sommer-Larsen, R. Kornbluh, and R. Pelrine, “Actuation response of polyacrylate dielectric elastomers,” J. Intell. Mater. Syst. Struct. 14, 787–793 (2003).
[CrossRef]

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287, 836–839 (2000).
[CrossRef]

R. Pelrine, R. Kornbluh, and G. Kofod, “High-strain actuator materials based on dielectric elastomers,” Adv. Mater. 12, 1223–1225 (2000).
[CrossRef]

Pelrine, R. E.

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators A 64, 77–85(1998).
[CrossRef]

Peng, Q.

L. Qu, Q. Peng, L. Dai, G. Spinks, G. Wallace, and R. Baughman, “Carbon nanotube electroactive polymer materials: Opportunities and challenges,” MRS Bulletin 33, 215–224 (2008).
[CrossRef]

Pettersson, L.

L. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Inganäs, “Anisotropic optical properties of doped poly(3,4-ethylenedioxythiophene),” Synth. Met. 101, 198–199(1999).
[CrossRef]

Pielartzik, H.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,” Adv. Mater. 12, 481–494 (2000).
[CrossRef]

Plesse, C.

F. Vidal, C. Plesse, D. Teyssié, and C. Chevrot, “Long-life air working conducting semi-ipn/ionic liquid based actuator,” Synthetic Metals 142, 287–291 (2004).
[CrossRef]

Pu, L.

T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008).
[CrossRef]

Punning, A.

V. Vunder, A. Punning, and A. Aabloo, “Variable-focal lens using electroactive polymer actuator,” SPIE Reviews 7977, 79771E (2011).
[CrossRef]

Qu, L.

L. Qu, Q. Peng, L. Dai, G. Spinks, G. Wallace, and R. Baughman, “Carbon nanotube electroactive polymer materials: Opportunities and challenges,” MRS Bulletin 33, 215–224 (2008).
[CrossRef]

Reynolds, J. R.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,” Adv. Mater. 12, 481–494 (2000).
[CrossRef]

Richa, A. M.

Rinzler, A.

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Rosete-Aguilar, M.

Rosset, S.

M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion-implanted eaps,” SPIE Reviews 7642, 76422K(2010).
[CrossRef]

Rossi, D. D.

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Roth, S.

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Ryew, S.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.

Ryu, J. W.

H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008).
[CrossRef]

Sánchez-Marin, F. J.

Sánchez-Morales, M. E.

Sarac, A.

A. Sarac, G. Sönmez, and F. Cebeci, “Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on carbon fibre microelectrodes,” J. Appl. Electrochem. 33, 295–301 (2003).
[CrossRef]

Sariciftci, N.

C. Kvarnström, H. Neugebauer, A. Ivaska, and N. Sariciftci, “Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (atr-ftir) study,” J. Mol. Struct. 521, 271–277 (2000).
[CrossRef]

Sato, S.

Seo, H.

M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).

M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006).
[CrossRef]

Seo, H. J.

M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, and Y. Lee, “An electroactive conducting polymer actuator based on nbr/rtil solid polymer electrolyte,” Smart Mater. Struc. 16, S237 (2007).
[CrossRef]

Shea, H.

M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion-implanted eaps,” SPIE Reviews 7642, 76422K(2010).
[CrossRef]

Shimizu, I.

I. Shimizu, K. Kikuchi, and S. Tsuchitani, “Variable-focal length lens using IPMC,” in ICCAS-SICE (IEEE, 2009), pp. 4752–4756.

Smela, E.

E. Smela, O. Ingana¨s, and I. Lundstro¨m, “Controlled folding of micrometer-size structures,” Science 268, 1735–1738 (1995).
[CrossRef]

Sommer-Larsen, P.

G. Kofod and P. Sommer-Larsen, “Silicone dielectric elastomer actuators: Finite-elasticity model of actuation,” Sens. Actuators A 122, 273–283 (2005).
[CrossRef]

G. Kofod, P. Sommer-Larsen, R. Kornbluh, and R. Pelrine, “Actuation response of polyacrylate dielectric elastomers,” J. Intell. Mater. Syst. Struct. 14, 787–793 (2003).
[CrossRef]

Son, Y.

M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).

Song, K.

M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006).
[CrossRef]

Sönmez, G.

A. Sarac, G. Sönmez, and F. Cebeci, “Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on carbon fibre microelectrodes,” J. Appl. Electrochem. 33, 295–301 (2003).
[CrossRef]

Spinks, G.

L. Qu, Q. Peng, L. Dai, G. Spinks, G. Wallace, and R. Baughman, “Carbon nanotube electroactive polymer materials: Opportunities and challenges,” MRS Bulletin 33, 215–224 (2008).
[CrossRef]

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Sze, M. W. C.

Tadokoro, S.

K. Kim and S. Tadokoro, Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors (Springer, 2007).

Tak, Y.

J. Nam, H. Choi, Y. Tak, and K. Kim, “Novel electroactive, silicate nanocomposites prepared to be used as actuators and artificial muscles,” Sens. Actuators A 105, 83–90 (2003).
[CrossRef]

Tanie, K.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.

Teyssié, D.

F. Vidal, C. Plesse, D. Teyssié, and C. Chevrot, “Long-life air working conducting semi-ipn/ionic liquid based actuator,” Synthetic Metals 142, 287–291 (2004).
[CrossRef]

Thuy, D. V.

N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
[CrossRef]

Truong, T. L.

T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008).
[CrossRef]

Tsuchitani, S.

I. Shimizu, K. Kikuchi, and S. Tsuchitani, “Variable-focal length lens using IPMC,” in ICCAS-SICE (IEEE, 2009), pp. 4752–4756.

Vidal, F.

F. Vidal, C. Plesse, D. Teyssié, and C. Chevrot, “Long-life air working conducting semi-ipn/ionic liquid based actuator,” Synthetic Metals 142, 287–291 (2004).
[CrossRef]

Vunder, V.

V. Vunder, A. Punning, and A. Aabloo, “Variable-focal lens using electroactive polymer actuator,” SPIE Reviews 7977, 79771E (2011).
[CrossRef]

Wallace, G.

L. Qu, Q. Peng, L. Dai, G. Spinks, G. Wallace, and R. Baughman, “Carbon nanotube electroactive polymer materials: Opportunities and challenges,” MRS Bulletin 33, 215–224 (2008).
[CrossRef]

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Wang, B.

Ye, M.

Zakhidov, A.

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Zhang, D.-Y.

ACS Appl. Mater. Interfaces

K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009).
[CrossRef]

Adv. Mater.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,” Adv. Mater. 12, 481–494 (2000).
[CrossRef]

R. Pelrine, R. Kornbluh, and G. Kofod, “High-strain actuator materials based on dielectric elastomers,” Adv. Mater. 12, 1223–1225 (2000).
[CrossRef]

Appl. Opt.

Biomicrofluidics

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010).
[CrossRef]

J. Appl. Electrochem.

A. Sarac, G. Sönmez, and F. Cebeci, “Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on carbon fibre microelectrodes,” J. Appl. Electrochem. 33, 295–301 (2003).
[CrossRef]

J. Intell. Mater. Syst. Struct.

G. Kofod, P. Sommer-Larsen, R. Kornbluh, and R. Pelrine, “Actuation response of polyacrylate dielectric elastomers,” J. Intell. Mater. Syst. Struct. 14, 787–793 (2003).
[CrossRef]

J. Mol. Struct.

C. Kvarnström, H. Neugebauer, A. Ivaska, and N. Sariciftci, “Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (atr-ftir) study,” J. Mol. Struct. 521, 271–277 (2000).
[CrossRef]

Mol. Cryst. Liq. Cryst.

M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).

MRS Bulletin

L. Qu, Q. Peng, L. Dai, G. Spinks, G. Wallace, and R. Baughman, “Carbon nanotube electroactive polymer materials: Opportunities and challenges,” MRS Bulletin 33, 215–224 (2008).
[CrossRef]

Opt. Express

Proc. SPIE

H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007).
[CrossRef]

B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008).
[CrossRef]

N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008).
[CrossRef]

Science

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287, 836–839 (2000).
[CrossRef]

E. Smela, O. Ingana¨s, and I. Lundstro¨m, “Controlled folding of micrometer-size structures,” Science 268, 1735–1738 (1995).
[CrossRef]

R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999).
[CrossRef]

Sens. Actuators A

J. Nam, H. Choi, Y. Tak, and K. Kim, “Novel electroactive, silicate nanocomposites prepared to be used as actuators and artificial muscles,” Sens. Actuators A 105, 83–90 (2003).
[CrossRef]

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators A 64, 77–85(1998).
[CrossRef]

G. Kofod and P. Sommer-Larsen, “Silicone dielectric elastomer actuators: Finite-elasticity model of actuation,” Sens. Actuators A 122, 273–283 (2005).
[CrossRef]

Sens. Actuators B

M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006).
[CrossRef]

Smart Mater. Struc.

M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, and Y. Lee, “An electroactive conducting polymer actuator based on nbr/rtil solid polymer electrolyte,” Smart Mater. Struc. 16, S237 (2007).
[CrossRef]

S.-M. Kim and K. J. Kim, “Palladium buffer-layered high performance ionic polymer–metal composites,” Smart Mater. Struc. 17, 035011 (2008).
[CrossRef]

J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, “Electrostrictive polymer nanocomposites exhibiting tunable electrical properties,” Smart Mater. Struc. 14, 87–90 (2005).
[CrossRef]

SPIE Reviews

H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008).
[CrossRef]

V. Vunder, A. Punning, and A. Aabloo, “Variable-focal lens using electroactive polymer actuator,” SPIE Reviews 7977, 79771E (2011).
[CrossRef]

M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion-implanted eaps,” SPIE Reviews 7642, 76422K(2010).
[CrossRef]

Synth. Met.

L. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Inganäs, “Anisotropic optical properties of doped poly(3,4-ethylenedioxythiophene),” Synth. Met. 101, 198–199(1999).
[CrossRef]

Synthetic Metals

F. Vidal, C. Plesse, D. Teyssié, and C. Chevrot, “Long-life air working conducting semi-ipn/ionic liquid based actuator,” Synthetic Metals 142, 287–291 (2004).
[CrossRef]

Thin Solid Films

T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008).
[CrossRef]

D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009).
[CrossRef]

Other

I. Shimizu, K. Kikuchi, and S. Tsuchitani, “Variable-focal length lens using IPMC,” in ICCAS-SICE (IEEE, 2009), pp. 4752–4756.

H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.

F. Beer, E. Johnston, and J. DeWolf, Mechanics of Materials (McGraw-Hill, 2006).

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.

H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.

Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges (SPIE press, 2001).

K. Kim and S. Tadokoro, Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Conceptual schematic view of the proposed transparent actuator.

Fig. 2.
Fig. 2.

Conceptual schematic view of TDE actuator and the boundary conditions.

Fig. 3.
Fig. 3.

(a) Experimental setup; (b) inner part of the TDE actuator lens module; (c) assembled TDE actuator lens module; and (d) feature of TDE film.

Fig. 4.
Fig. 4.

(a) Surface SEM images of silicone rubber, and (b) silicon rubber coated with PEDOT (20 min).

Fig. 5.
Fig. 5.

(a) ATR-FTIR difference spectra of PEDOT-silicone rubber at various reaction times; (b) full spectral region: 4000600cm1 enlargement of (g) in the region 16001350cm1

Fig. 6.
Fig. 6.

UV transmittance of PEDOT-silicone rubber films (left) and sample pictures for different polymerization times (right).

Fig. 7.
Fig. 7.

The measured displacement of TDE actuator in time with the film thicknesses of (a) 250, (b) 200 μm subjected to applied voltages from 1 to 5 kV, and (c) comparison of the maximum displacements of (a) and (b) as a function of voltage at 1 Hz.

Fig. 8.
Fig. 8.

(a) Maximum displacement of 250 μm thick TDE actuator as a function of frequency at 4 kV, and (b) the measured displacement of the actuator in time at selected frequencies.

Fig. 9.
Fig. 9.

Pictures captured with a DSLR camera that was focused on the distance of 12.5 cm (left) and 15.5 cm (right). Voltage is ON in the left figure and OFF in the right.

Fig. 10.
Fig. 10.

Illustration of the concave lens working principle.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

P=ε0εrE2,
E=Vt,
t=t0(1+δz),
δz=σzY=1Yϵ0ϵr(Vt0)2(11+δz)2.
δz3+2δz2+δz=ε1Yϵ0ϵr(Vt0)2.
(1+δx)(1+δy)(1+δz)=1,
(1+δr)2(1+δz)=1,
δr=11+δ112δz.
b=a(1+δa)=rθ,
rsin(θ2)=a2.
θsin(θ/2)=2(1+δa).
θ=24(111+δa).
h=r[1cos(θ2)],
d4ydx4=w(x)EI,
EId4ydx4=w(x),
EId3ydx3=V(x)=w(x)dx+C1,
EId2ydx2=M(x)=dxw(x)dx+C1x+C2,
EIdydx=EIθ(x)=dxdxw(x)dx+12C1x2+C2x+C3,
EIy(x)=dxdxdxw(x)dx+16C1x3+12C2x3+C3x+C4.
EId4ydx4=w(x)=w,
EId3ydx3=V(x)=wx+C1,
EId2ydx2=M(x)=12wx2+C1x+C2,
EIdydx=EIθ(x)=16wx3+12C1x2+C2x+C3,
EIy(x)=124wx4+16C1x3+12C2x2+C3x+C4.
EIθ(x)=16wx3+12C1x2+C2x,
EIy(x)=124wx4+16C1x3+12C2x2.
0=16wL3+12C1L2+C2L,
0=124wL4+16C1L3+12C2L2.
C1=112wL2,C2=12wL.
y=w24EI(x4+2Lx3L2x2).
|y|max=wL4384EI.

Metrics