Abstract

A strip-loaded waveguide, electro-optic modulator was designed and analyzed in terms of single mode conditions, optical loss due to the metal electrodes, modulation efficiency, and mode size. Two designs were compared: Design 1 optimized the half-wave voltage (Vπ=1.1V) with a nearly symmetric waveguide by maximizing modulation efficiency and minimizing the overall thickness of the waveguide; Design 2 optimized the insertion loss by reducing coupling loss by 4.6 dB via a strongly asymmetric waveguide that maximizes the overall mode size to most efficiently overlap with a single mode fiber. Design 2 also has a favorable half-wave voltage (Vπ=1.75V). Some general guidelines in the selection of cladding layers in a detailed design of a poled-polymer electro-optic modulator incorporating a strip-loaded waveguide structure are suggested.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Chen, H. R. Fetterman, W. H. Steier, L. R. Dalton, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
    [CrossRef]
  2. M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
    [CrossRef]
  3. Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
    [CrossRef]
  4. Y. Shi, W. Lin, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).
    [CrossRef]
  5. C. Pollock, Fundamentals of Optoelectronics (Irwin, 1994), Chaps. 2 and 8.
  6. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
  7. R. G. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer, 1995), Chap. 3.
  8. H. Furuta, H. Noda, and A. Ihaya, “Novel optical waveguide for integrated optics,” Appl. Opt. 13, 322–326 (1974).
    [CrossRef]
  9. V. Ramaswamy, “Strip loaded film waveguide,” Bell Syst. Tech. J. 53, 697–705 (1974).
  10. E. A. J. Marcatili, “Slab-coupled waveguides,” Bell Syst. Tech. J. 53, 645–674 (1974).
  11. A. J. Moses, Handbook of Electronic Materials Vol. 1: Optical Material Properties (IFI/Plemum, 1971), pp. 36–37.
  12. C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering (Cambridge, 1996).
  13. W. K. Burns and G. B. Hocker, “End fire coupling between optical fibers and diffused channel waveguides,” Appl. Opt. 16, 2048–2050 (1977).
    [CrossRef]
  14. L. G. Cohen, “Power coupling from GaAs injection lasers into optical fibers,” Bell Syst. Tech. J. 51, 573–594 (1972).
  15. D. Marcuse, Theory of Dielectric Optical Waveguides(Academic, 1974), Chap. 1.
  16. D. Marcuse, “Excitation of the dominant mode of a round fiber by a Gaussian beam,” Bell Syst. Tech. J. 49, 1695–1702 (1970).
  17. S. K. Kim, K. Geary, D. H. Chang, H. R. Fetterman, and W. H. Steier, “TM-pass polymer modulators with poling-induced waveguides and self-aligned electrodes,” Electron. Lett. 39, 721–722 (2003).
    [CrossRef]
  18. M.-C. Oh, H. Zhang, A. Szep, C. Zhang, H. Erlig, and H. R. Fetterman, “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Appl. Phys. Lett. 76, 3525–3527 (2000).
    [CrossRef]
  19. H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
    [CrossRef]
  20. Master Bond Inc., 154 Hobart Street, Hackensack, NJ 07601, 201-343-8983, http://www.masterbond.com .
  21. E. Heckman, J. Hagen, P. Yaney, J. Grote, and F. Hopkins, “Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications,” App. Phys. Lett. 87, 211115 (2005).
    [CrossRef]
  22. J. Grote, N. Ogata, D. Diggs, and F. Hopkins, “Deoxyribonucleic acid (DNA) cladding layers for nonlinear optic polymer based electro-optic devices,” Proc. SPIE 4991, 621–625 (2003).
    [CrossRef]
  23. Sigma-Aldrich Corporation, P.O. Box 14508, St. Louis, MO 63178, USA, 1-800-325-3010, http://www.sigmaaldrich.com .
  24. P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
    [CrossRef]
  25. R. Norwood, R. Gao, J. Sharma, and C. C. Teng, “Sources of loss in single-mode polymer optical waveguides,” Proc. SPIE 4439, 19–28 (2001).
    [CrossRef]

2007

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

2006

P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
[CrossRef]

2005

E. Heckman, J. Hagen, P. Yaney, J. Grote, and F. Hopkins, “Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications,” App. Phys. Lett. 87, 211115 (2005).
[CrossRef]

2003

J. Grote, N. Ogata, D. Diggs, and F. Hopkins, “Deoxyribonucleic acid (DNA) cladding layers for nonlinear optic polymer based electro-optic devices,” Proc. SPIE 4991, 621–625 (2003).
[CrossRef]

S. K. Kim, K. Geary, D. H. Chang, H. R. Fetterman, and W. H. Steier, “TM-pass polymer modulators with poling-induced waveguides and self-aligned electrodes,” Electron. Lett. 39, 721–722 (2003).
[CrossRef]

2002

M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef]

2001

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

R. Norwood, R. Gao, J. Sharma, and C. C. Teng, “Sources of loss in single-mode polymer optical waveguides,” Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

2000

M.-C. Oh, H. Zhang, A. Szep, C. Zhang, H. Erlig, and H. R. Fetterman, “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Appl. Phys. Lett. 76, 3525–3527 (2000).
[CrossRef]

Y. Shi, W. Lin, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).
[CrossRef]

1997

D. Chen, H. R. Fetterman, W. H. Steier, L. R. Dalton, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

1977

1974

V. Ramaswamy, “Strip loaded film waveguide,” Bell Syst. Tech. J. 53, 697–705 (1974).

E. A. J. Marcatili, “Slab-coupled waveguides,” Bell Syst. Tech. J. 53, 645–674 (1974).

H. Furuta, H. Noda, and A. Ihaya, “Novel optical waveguide for integrated optics,” Appl. Opt. 13, 322–326 (1974).
[CrossRef]

1972

L. G. Cohen, “Power coupling from GaAs injection lasers into optical fibers,” Bell Syst. Tech. J. 51, 573–594 (1972).

1970

D. Marcuse, “Excitation of the dominant mode of a round fiber by a Gaussian beam,” Bell Syst. Tech. J. 49, 1695–1702 (1970).

1969

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).

Bartsch, C.

P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
[CrossRef]

Burns, W. K.

Chang, D. H.

S. K. Kim, K. Geary, D. H. Chang, H. R. Fetterman, and W. H. Steier, “TM-pass polymer modulators with poling-induced waveguides and self-aligned electrodes,” Electron. Lett. 39, 721–722 (2003).
[CrossRef]

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

Chang, Y.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, W. H. Steier, L. R. Dalton, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Cohen, L. G.

L. G. Cohen, “Power coupling from GaAs injection lasers into optical fibers,” Bell Syst. Tech. J. 51, 573–594 (1972).

Dalton, L. R.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

Y. Shi, W. Lin, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, W. H. Steier, L. R. Dalton, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Davis, A.

P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
[CrossRef]

Davis, C. C.

C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering (Cambridge, 1996).

DeRose, C. T.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Diggs, D.

J. Grote, N. Ogata, D. Diggs, and F. Hopkins, “Deoxyribonucleic acid (DNA) cladding layers for nonlinear optic polymer based electro-optic devices,” Proc. SPIE 4991, 621–625 (2003).
[CrossRef]

Enami, Y.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Erben, C.

M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef]

Erlig, H.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, C. Zhang, H. Erlig, and H. R. Fetterman, “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Appl. Phys. Lett. 76, 3525–3527 (2000).
[CrossRef]

Fetterman, H. R.

S. K. Kim, K. Geary, D. H. Chang, H. R. Fetterman, and W. H. Steier, “TM-pass polymer modulators with poling-induced waveguides and self-aligned electrodes,” Electron. Lett. 39, 721–722 (2003).
[CrossRef]

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, C. Zhang, H. Erlig, and H. R. Fetterman, “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Appl. Phys. Lett. 76, 3525–3527 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, W. H. Steier, L. R. Dalton, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Furuta, H.

Gao, R.

R. Norwood, R. Gao, J. Sharma, and C. C. Teng, “Sources of loss in single-mode polymer optical waveguides,” Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

Geary, K.

S. K. Kim, K. Geary, D. H. Chang, H. R. Fetterman, and W. H. Steier, “TM-pass polymer modulators with poling-induced waveguides and self-aligned electrodes,” Electron. Lett. 39, 721–722 (2003).
[CrossRef]

Gill, D.

M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef]

Gopalan, P.

M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef]

Grote, J.

P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
[CrossRef]

E. Heckman, J. Hagen, P. Yaney, J. Grote, and F. Hopkins, “Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications,” App. Phys. Lett. 87, 211115 (2005).
[CrossRef]

J. Grote, N. Ogata, D. Diggs, and F. Hopkins, “Deoxyribonucleic acid (DNA) cladding layers for nonlinear optic polymer based electro-optic devices,” Proc. SPIE 4991, 621–625 (2003).
[CrossRef]

Hagen, J.

P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
[CrossRef]

E. Heckman, J. Hagen, P. Yaney, J. Grote, and F. Hopkins, “Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications,” App. Phys. Lett. 87, 211115 (2005).
[CrossRef]

Heber, J.

M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef]

Heckman, E.

P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
[CrossRef]

E. Heckman, J. Hagen, P. Yaney, J. Grote, and F. Hopkins, “Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications,” App. Phys. Lett. 87, 211115 (2005).
[CrossRef]

Hocker, G. B.

Hopkins, F.

P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
[CrossRef]

E. Heckman, J. Hagen, P. Yaney, J. Grote, and F. Hopkins, “Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications,” App. Phys. Lett. 87, 211115 (2005).
[CrossRef]

J. Grote, N. Ogata, D. Diggs, and F. Hopkins, “Deoxyribonucleic acid (DNA) cladding layers for nonlinear optic polymer based electro-optic devices,” Proc. SPIE 4991, 621–625 (2003).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer, 1995), Chap. 3.

Ihaya, A.

Jen, A. K.-Y.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Katz, H.

M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef]

Kim, S. K.

S. K. Kim, K. Geary, D. H. Chang, H. R. Fetterman, and W. H. Steier, “TM-pass polymer modulators with poling-induced waveguides and self-aligned electrodes,” Electron. Lett. 39, 721–722 (2003).
[CrossRef]

Lee, M.

M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef]

Lin, W.

Y. Shi, W. Lin, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).
[CrossRef]

Luo, J.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, “Slab-coupled waveguides,” Bell Syst. Tech. J. 53, 645–674 (1974).

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).

Marcuse, D.

D. Marcuse, “Excitation of the dominant mode of a round fiber by a Gaussian beam,” Bell Syst. Tech. J. 49, 1695–1702 (1970).

D. Marcuse, Theory of Dielectric Optical Waveguides(Academic, 1974), Chap. 1.

Mathine, D.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

McGee, D.

M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef]

Moses, A. J.

A. J. Moses, Handbook of Electronic Materials Vol. 1: Optical Material Properties (IFI/Plemum, 1971), pp. 36–37.

Noda, H.

Norwood, R.

R. Norwood, R. Gao, J. Sharma, and C. C. Teng, “Sources of loss in single-mode polymer optical waveguides,” Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

Norwood, R. A.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Ogata, N.

J. Grote, N. Ogata, D. Diggs, and F. Hopkins, “Deoxyribonucleic acid (DNA) cladding layers for nonlinear optic polymer based electro-optic devices,” Proc. SPIE 4991, 621–625 (2003).
[CrossRef]

Oh, M.-C.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, C. Zhang, H. Erlig, and H. R. Fetterman, “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Appl. Phys. Lett. 76, 3525–3527 (2000).
[CrossRef]

Peyghambarian, N.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Pollock, C.

C. Pollock, Fundamentals of Optoelectronics (Irwin, 1994), Chaps. 2 and 8.

Ramaswamy, V.

V. Ramaswamy, “Strip loaded film waveguide,” Bell Syst. Tech. J. 53, 697–705 (1974).

Sharma, J.

R. Norwood, R. Gao, J. Sharma, and C. C. Teng, “Sources of loss in single-mode polymer optical waveguides,” Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

Shi, Y.

Y. Shi, W. Lin, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, W. H. Steier, L. R. Dalton, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Steier, W. H.

S. K. Kim, K. Geary, D. H. Chang, H. R. Fetterman, and W. H. Steier, “TM-pass polymer modulators with poling-induced waveguides and self-aligned electrodes,” Electron. Lett. 39, 721–722 (2003).
[CrossRef]

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

Y. Shi, W. Lin, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, W. H. Steier, L. R. Dalton, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Subramanyam, G.

P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
[CrossRef]

Szep, A.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, C. Zhang, H. Erlig, and H. R. Fetterman, “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Appl. Phys. Lett. 76, 3525–3527 (2000).
[CrossRef]

Teng, C. C.

R. Norwood, R. Gao, J. Sharma, and C. C. Teng, “Sources of loss in single-mode polymer optical waveguides,” Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

Yaney, P.

P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
[CrossRef]

E. Heckman, J. Hagen, P. Yaney, J. Grote, and F. Hopkins, “Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications,” App. Phys. Lett. 87, 211115 (2005).
[CrossRef]

Zhang, C.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

Y. Shi, W. Lin, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, C. Zhang, H. Erlig, and H. R. Fetterman, “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Appl. Phys. Lett. 76, 3525–3527 (2000).
[CrossRef]

Zhang, H.

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

Y. Shi, W. Lin, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).
[CrossRef]

M.-C. Oh, H. Zhang, A. Szep, C. Zhang, H. Erlig, and H. R. Fetterman, “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Appl. Phys. Lett. 76, 3525–3527 (2000).
[CrossRef]

App. Phys. Lett.

E. Heckman, J. Hagen, P. Yaney, J. Grote, and F. Hopkins, “Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications,” App. Phys. Lett. 87, 211115 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M.-C. Oh, H. Zhang, A. Szep, C. Zhang, H. Erlig, and H. R. Fetterman, “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Appl. Phys. Lett. 76, 3525–3527 (2000).
[CrossRef]

H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001).
[CrossRef]

D. Chen, H. R. Fetterman, W. H. Steier, L. R. Dalton, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Y. Shi, W. Lin, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).

L. G. Cohen, “Power coupling from GaAs injection lasers into optical fibers,” Bell Syst. Tech. J. 51, 573–594 (1972).

D. Marcuse, “Excitation of the dominant mode of a round fiber by a Gaussian beam,” Bell Syst. Tech. J. 49, 1695–1702 (1970).

V. Ramaswamy, “Strip loaded film waveguide,” Bell Syst. Tech. J. 53, 697–705 (1974).

E. A. J. Marcatili, “Slab-coupled waveguides,” Bell Syst. Tech. J. 53, 645–674 (1974).

Electron. Lett.

S. K. Kim, K. Geary, D. H. Chang, H. R. Fetterman, and W. H. Steier, “TM-pass polymer modulators with poling-induced waveguides and self-aligned electrodes,” Electron. Lett. 39, 721–722 (2003).
[CrossRef]

Proc. SPIE

J. Grote, N. Ogata, D. Diggs, and F. Hopkins, “Deoxyribonucleic acid (DNA) cladding layers for nonlinear optic polymer based electro-optic devices,” Proc. SPIE 4991, 621–625 (2003).
[CrossRef]

P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006).
[CrossRef]

R. Norwood, R. Gao, J. Sharma, and C. C. Teng, “Sources of loss in single-mode polymer optical waveguides,” Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

Science

M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef]

Other

C. Pollock, Fundamentals of Optoelectronics (Irwin, 1994), Chaps. 2 and 8.

D. Marcuse, Theory of Dielectric Optical Waveguides(Academic, 1974), Chap. 1.

R. G. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer, 1995), Chap. 3.

Sigma-Aldrich Corporation, P.O. Box 14508, St. Louis, MO 63178, USA, 1-800-325-3010, http://www.sigmaaldrich.com .

Master Bond Inc., 154 Hobart Street, Hackensack, NJ 07601, 201-343-8983, http://www.masterbond.com .

A. J. Moses, Handbook of Electronic Materials Vol. 1: Optical Material Properties (IFI/Plemum, 1971), pp. 36–37.

C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering (Cambridge, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross section of (a) the strip-loaded waveguide structure, (b) equivalent symmetric waveguide, and (c) 2D configuration using equivalent refractive index neq.

Fig. 2.
Fig. 2.

Effective index for different modes (p,q) and core layer thickness for a strip-loaded waveguide: nf=1.630, nt=1.603, nb=1.506, and n=1.488.

Fig. 3.
Fig. 3.

Effective index for q=0 and q=1 modes as a function of core layer thickness and a different refractive index of the top cladding layer. The refractive indices of the core layer and bottom layer was nf=1.630 and nb=1.506, respectively.

Fig. 4.
Fig. 4.

Five-layer waveguide electrode associated optical loss analysis. Launch power is the normalized power coupled into mode 0, and total power* is the normalized power in the calculated optical field. (a) Core layer 4 μm and nt=1.603,(b) core layer 2 μm and nt=1.519.

Fig. 5.
Fig. 5.

Cladding layers and total waveguide thickness dtot=h+dt+db required an electrode-associated loss of less than 0.1dB/cm within a single mode operation range.

Fig. 6.
Fig. 6.

Modulation efficiency for strip-loaded waveguide with the width W=7μm as a function of core layer thickness for different refractive indices of the top cladding layer: nf=1.63 and nb=1.506.

Fig. 7.
Fig. 7.

Coupling efficiency as a function of core layer thickness for different refractive indices of the top cladding layer: nf=1.63 and nb=1.506.

Fig. 8.
Fig. 8.

Design figure of merit of a strip-loaded waveguide electro-optic modulator as a function of core layer thickness for different refractive indices of the top cladding layer: nf=1.63 and nb=1.506.

Tables (1)

Tables Icon

Table 1. Device Parameters and Predicted Performance of Two Electro-Optic Modulators

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

neq=(nf2NI2+NII2)12,
κxh=qπ+tan1(nf2γb/nb2κx)+tan1(nf2γt/nt2κx),
κy=pπ+2tan1(γeq/κy),
γb=(ko2nf2ko2nb2κx2)12,
γt=(ko2nf2ko2nt2κx2)12,
γeq=(ko2nf2ko2neq2κy2)12.
βpq=(ko2nf2κx2κy2)12,
Npq=βpqko,
Ex(x,y)=iAγt2+ko2nt2γtβcos(φx)cos(κyy+φy)eγtx(x>0)(0yW)iA(ko2nf2κx2)κxβsin(κxx+φx)cos(κyy+φy)(hx0)(0yW)iAγb2+ko2nb2γbβcos(κxh+φx)cos(κyy+φy)eγb(x+h)(x<h)(0yW)iAnf2neq2(ko2neq2κx2)κxβcos(κyW+φy)sin(κxx+φx)eγeq(yW)(hx0)(y>W)iAnf2neq2(ko2neq2κx2)κxβcos(φy)sin(κxx+φx)eγeqy(hx0)(y<0).
N=[nt2+b(nf2nt2)]12,
ΔNΔnf=dbdnf(nf2nt2)2N+b(nfN)
K=4(wxa+awx)(wya+awy),
EG(x,y)=Aoexp[(xxowx)2]exp[(yyowy)2],
ηx=[E00X(x)·EG(x,yo)dx]2(E00X(x))2dx(EG(x,yo))2dx,ηy=[E00X(y)·EG(xo,y)dy]2(E00X(y))2dx(EG(xo,y))2dx,
K=TηxηyηqK,
Vπ=(λnf3r33)(ΔnfΔNdtot)1L,
FOMd=(ΔN/Δnf)/dtot.

Metrics