Abstract

We demonstrate an all-optical synchronization using an amplified-feedback distributed feedback laser with coherent injection experimentally, which can synchronize 40 GHz degraded signals even with optical signal-to-noise ratio as low as 5 dB, or chromatic dispersion as large as 408ps/nm. Besides, this optical synchronization has a large range of power operation, i.e. high sensitivity of synchronization, from 21.40dBm to 8.23dBm, as well as a large frequency-locking range of 190 MHz.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in all optical clock recovery at 43  Gb/s for 3R regeneration applications,” in European Conference on Optical Communications, 2006 (ECOC, 2006).
  2. J. Li, T. Huang, and L. R. Chen, “Detailed analysis of all-optical clock recovery at 10  Gb/s based on a fiber optical parametric oscillator,” IEEE J. Sel. Top. Quantum Electron. 18, 701–708 (2012).
    [CrossRef]
  3. S. Arahira and Y. Ogawa, “Cavity-resonant behaviors of all-optical synchronization and clock recovery in passively mode-locked laser diodes,” IEEE J. Quantum Electron. 44, 410–423 (2008).
    [CrossRef]
  4. M. R. G. Leiria, K. Inwoong, V. T. C. Adolfo, and G. F. Li, “Experimental study of pattern-independent phase noise accumulation in an all-optical clock recovery chain based on two-section gain-coupled DFB lasers,” IEEE J. Lightwave Tech. 26, 1661–1670 (2008).
    [CrossRef]
  5. Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
    [CrossRef]
  6. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
    [CrossRef]
  7. C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
    [CrossRef]
  8. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–207 (1986).
    [CrossRef]
  9. A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26, 1115–1123 (1990).
    [CrossRef]
  10. Y. H. Li, C. Kim, Guifang Li, Y. Kaneko, R. L. Jungerman, and O. Buccafusca, “Wavelength and polarization insensitive all-optical clock recovery from 96  Gb/s data by using a two-section gain-coupled DFB laser,” IEEE Photon. Technol. Lett. 15, 590–592 (2003).
    [CrossRef]
  11. Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
    [CrossRef]

2012

J. Li, T. Huang, and L. R. Chen, “Detailed analysis of all-optical clock recovery at 10  Gb/s based on a fiber optical parametric oscillator,” IEEE J. Sel. Top. Quantum Electron. 18, 701–708 (2012).
[CrossRef]

2011

C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
[CrossRef]

2010

Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

2008

S. Arahira and Y. Ogawa, “Cavity-resonant behaviors of all-optical synchronization and clock recovery in passively mode-locked laser diodes,” IEEE J. Quantum Electron. 44, 410–423 (2008).
[CrossRef]

M. R. G. Leiria, K. Inwoong, V. T. C. Adolfo, and G. F. Li, “Experimental study of pattern-independent phase noise accumulation in an all-optical clock recovery chain based on two-section gain-coupled DFB lasers,” IEEE J. Lightwave Tech. 26, 1661–1670 (2008).
[CrossRef]

2003

Y. H. Li, C. Kim, Guifang Li, Y. Kaneko, R. L. Jungerman, and O. Buccafusca, “Wavelength and polarization insensitive all-optical clock recovery from 96  Gb/s data by using a two-section gain-coupled DFB laser,” IEEE Photon. Technol. Lett. 15, 590–592 (2003).
[CrossRef]

1990

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26, 1115–1123 (1990).
[CrossRef]

1986

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–207 (1986).
[CrossRef]

1980

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Adolfo, V. T. C.

M. R. G. Leiria, K. Inwoong, V. T. C. Adolfo, and G. F. Li, “Experimental study of pattern-independent phase noise accumulation in an all-optical clock recovery chain based on two-section gain-coupled DFB lasers,” IEEE J. Lightwave Tech. 26, 1661–1670 (2008).
[CrossRef]

Arahira, S.

S. Arahira and Y. Ogawa, “Cavity-resonant behaviors of all-optical synchronization and clock recovery in passively mode-locked laser diodes,” IEEE J. Quantum Electron. 44, 410–423 (2008).
[CrossRef]

Bramerie, L.

V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in all optical clock recovery at 43  Gb/s for 3R regeneration applications,” in European Conference on Optical Communications, 2006 (ECOC, 2006).

Buccafusca, O.

Y. H. Li, C. Kim, Guifang Li, Y. Kaneko, R. L. Jungerman, and O. Buccafusca, “Wavelength and polarization insensitive all-optical clock recovery from 96  Gb/s data by using a two-section gain-coupled DFB laser,” IEEE Photon. Technol. Lett. 15, 590–592 (2003).
[CrossRef]

Chen, C.

C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
[CrossRef]

Chen, L. R.

J. Li, T. Huang, and L. R. Chen, “Detailed analysis of all-optical clock recovery at 10  Gb/s based on a fiber optical parametric oscillator,” IEEE J. Sel. Top. Quantum Electron. 18, 701–708 (2012).
[CrossRef]

Chen, W.

Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Chen, W. X.

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Finch, A.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26, 1115–1123 (1990).
[CrossRef]

Huang, T.

J. Li, T. Huang, and L. R. Chen, “Detailed analysis of all-optical clock recovery at 10  Gb/s based on a fiber optical parametric oscillator,” IEEE J. Sel. Top. Quantum Electron. 18, 701–708 (2012).
[CrossRef]

Inwoong, K.

M. R. G. Leiria, K. Inwoong, V. T. C. Adolfo, and G. F. Li, “Experimental study of pattern-independent phase noise accumulation in an all-optical clock recovery chain based on two-section gain-coupled DFB lasers,” IEEE J. Lightwave Tech. 26, 1661–1670 (2008).
[CrossRef]

Jungerman, R. L.

Y. H. Li, C. Kim, Guifang Li, Y. Kaneko, R. L. Jungerman, and O. Buccafusca, “Wavelength and polarization insensitive all-optical clock recovery from 96  Gb/s data by using a two-section gain-coupled DFB laser,” IEEE Photon. Technol. Lett. 15, 590–592 (2003).
[CrossRef]

Kaneko, Y.

Y. H. Li, C. Kim, Guifang Li, Y. Kaneko, R. L. Jungerman, and O. Buccafusca, “Wavelength and polarization insensitive all-optical clock recovery from 96  Gb/s data by using a two-section gain-coupled DFB laser,” IEEE Photon. Technol. Lett. 15, 590–592 (2003).
[CrossRef]

Kean, P. N.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26, 1115–1123 (1990).
[CrossRef]

Kim, C.

Y. H. Li, C. Kim, Guifang Li, Y. Kaneko, R. L. Jungerman, and O. Buccafusca, “Wavelength and polarization insensitive all-optical clock recovery from 96  Gb/s data by using a two-section gain-coupled DFB laser,” IEEE Photon. Technol. Lett. 15, 590–592 (2003).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Leiria, M. R. G.

M. R. G. Leiria, K. Inwoong, V. T. C. Adolfo, and G. F. Li, “Experimental study of pattern-independent phase noise accumulation in an all-optical clock recovery chain based on two-section gain-coupled DFB lasers,” IEEE J. Lightwave Tech. 26, 1661–1670 (2008).
[CrossRef]

Li, G. F.

M. R. G. Leiria, K. Inwoong, V. T. C. Adolfo, and G. F. Li, “Experimental study of pattern-independent phase noise accumulation in an all-optical clock recovery chain based on two-section gain-coupled DFB lasers,” IEEE J. Lightwave Tech. 26, 1661–1670 (2008).
[CrossRef]

Li, Guifang

Y. H. Li, C. Kim, Guifang Li, Y. Kaneko, R. L. Jungerman, and O. Buccafusca, “Wavelength and polarization insensitive all-optical clock recovery from 96  Gb/s data by using a two-section gain-coupled DFB laser,” IEEE Photon. Technol. Lett. 15, 590–592 (2003).
[CrossRef]

Li, J.

J. Li, T. Huang, and L. R. Chen, “Detailed analysis of all-optical clock recovery at 10  Gb/s based on a fiber optical parametric oscillator,” IEEE J. Sel. Top. Quantum Electron. 18, 701–708 (2012).
[CrossRef]

Li, Y. H.

Y. H. Li, C. Kim, Guifang Li, Y. Kaneko, R. L. Jungerman, and O. Buccafusca, “Wavelength and polarization insensitive all-optical clock recovery from 96  Gb/s data by using a two-section gain-coupled DFB laser,” IEEE Photon. Technol. Lett. 15, 590–592 (2003).
[CrossRef]

Liang, S.

C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
[CrossRef]

Lobo, S.

V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in all optical clock recovery at 43  Gb/s for 3R regeneration applications,” in European Conference on Optical Communications, 2006 (ECOC, 2006).

Lou, C.

C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
[CrossRef]

Lou, C. Y.

Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Ogawa, Y.

S. Arahira and Y. Ogawa, “Cavity-resonant behaviors of all-optical synchronization and clock recovery in passively mode-locked laser diodes,” IEEE J. Quantum Electron. 44, 410–423 (2008).
[CrossRef]

Pan, J.

C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
[CrossRef]

Pan, J. Q.

Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Qiu, J.

C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
[CrossRef]

Roncin, V.

V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in all optical clock recovery at 43  Gb/s for 3R regeneration applications,” in European Conference on Optical Communications, 2006 (ECOC, 2006).

Sibbett, W.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26, 1115–1123 (1990).
[CrossRef]

Simon, J-C.

V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in all optical clock recovery at 43  Gb/s for 3R regeneration applications,” in European Conference on Optical Communications, 2006 (ECOC, 2006).

Sun, Y.

C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–207 (1986).
[CrossRef]

Wang, L.

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Wang, W.

C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Zhao, L.

C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
[CrossRef]

Zhao, L. J.

Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Zhao, X. F.

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Zhu, X.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26, 1115–1123 (1990).
[CrossRef]

Appl. Phys. B

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–207 (1986).
[CrossRef]

IEEE J. Lightwave Tech.

M. R. G. Leiria, K. Inwoong, V. T. C. Adolfo, and G. F. Li, “Experimental study of pattern-independent phase noise accumulation in an all-optical clock recovery chain based on two-section gain-coupled DFB lasers,” IEEE J. Lightwave Tech. 26, 1661–1670 (2008).
[CrossRef]

IEEE J. Lightwave Technol.

Y. Sun, J. Q. Pan, L. J. Zhao, W. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gbit/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20  Gb/s using an amplified feedback DFB laser,” IEEE J. Lightwave Technol. 28, 2521–2525 (2010).
[CrossRef]

IEEE J. Quantum Electron.

S. Arahira and Y. Ogawa, “Cavity-resonant behaviors of all-optical synchronization and clock recovery in passively mode-locked laser diodes,” IEEE J. Quantum Electron. 44, 410–423 (2008).
[CrossRef]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26, 1115–1123 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Li, T. Huang, and L. R. Chen, “Detailed analysis of all-optical clock recovery at 10  Gb/s based on a fiber optical parametric oscillator,” IEEE J. Sel. Top. Quantum Electron. 18, 701–708 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. H. Li, C. Kim, Guifang Li, Y. Kaneko, R. L. Jungerman, and O. Buccafusca, “Wavelength and polarization insensitive all-optical clock recovery from 96  Gb/s data by using a two-section gain-coupled DFB laser,” IEEE Photon. Technol. Lett. 15, 590–592 (2003).
[CrossRef]

Opt. Commun.

C. Chen, Y. Sun, L. Zhao, J. Pan, J. Qiu, S. Liang, W. Wang, and C. Lou “Amplified feedback DFB laser for 40  Gb/s all-optical clock recovery,” Opt. Commun. 284, 5613–5617 (2011).
[CrossRef]

Other

V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in all optical clock recovery at 43  Gb/s for 3R regeneration applications,” in European Conference on Optical Communications, 2006 (ECOC, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of the 40 GHz AFL.

Fig. 2.
Fig. 2.

Schematic of (a) injection locking; (b) coherent injection; (c) incoherent injection.

Fig. 3.
Fig. 3.

Experimental setup for 40 GHz all-optical synchronization.

Fig. 4.
Fig. 4.

(a) The optical spectra of injected signal (dashed black line), free-running (solid blue line) and injection locked (dotted red line) AFL. (b) The free running (blue line) and locked (red line) RF spectra of AFL. (c) Waveforms of injected 39.9 GHz optical pulse train without degradation (top) and correspondingly synchronized 39.9 GHz optical clock (bottom). (d) SSB phase noise spectra of injected optical pulse train (red line) and output synchronized optical clock (blue line), respectively.

Fig. 5.
Fig. 5.

(a) The dependence of the timing jitter of the synchronized clock on OSNR of the injected signal; Waveforms of the (b) injected degraded signal with OSNR of 5 dB, and (c) correspondingly synchronized optical clock, (d) the optical spectra of input (dashed black line) and output (solid red line) signals, (e) SSB spectra of the synchronized clock, when injected signal was with OSNR of 5 dB.

Fig. 6.
Fig. 6.

(a) The dependence of timing jitter on CD of the injected signal; Waveforms of the (b) injected pulse train with CD of 408ps/nm, and (c) correspondingly synchronized optical clock, (d) the optical spectra of input (dashed black line) and output (solid red line), (d) SSB spectra of output clock when injected signal was with CD of 408ps/nm.

Fig. 7.
Fig. 7.

The dependence of the timing jitters of the synchronized clock on the optical power of the injected signal.

Fig. 8.
Fig. 8.

Waveforms and SSB spectra of the synchronized clock at injected optical powers of 20.46dBm, 16.44dBm, 11.39dBm, and 8.23dBm, respectively.

Fig. 9.
Fig. 9.

The dependence of the timing jitters on the polarization of the injected signal when the injected optical power was 16.44dBm.

Fig. 10.
Fig. 10.

(a) Waveforms of the injected 6.5ps pulse train (top), the synchronized optical clock (bottom), and (b) the SSB spectrum of the synchronized clock.

Metrics