Abstract

The basic quadratic electro-optic properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) transparent ceramics have been studied under both DC and AC electric field bias. The contribution of piezoelectric resonance to electro-optic effect for this quadratic electro-optic ceramics material has been experimentally demonstrated and theoretically analyzed. It is found that, at the piezoelectric resonance frequencies, the piezoelectric induced electro-optic effect dominates and leads to a dramatically high sensitivity for weak electric signal detection. About 20 dB signal-to-noise ratio is attained when detecting AC electric field strength of 1V/m with optimized DC bias. Besides, the effects of AC frequency and amplitude on halfwave voltage Vπ of PMN-PT are investigated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kusumoto and T. Sekiya, “Processing and properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutions from PbO- and MgO-excess compositions,” Mater. Res. Bull. 33, 1367–1375 (1998).
    [CrossRef]
  2. H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
    [CrossRef]
  3. A. K. Singh, D. Pandey, and O. Zaharko, “Powder neutron diffraction study of phase transitions in and a phase diagram of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3,” Phys. Rev. B 74, 0241011 (2006).
    [CrossRef]
  4. H. Cao, J. F. Li, D. Viehland, and G. Y. Xu, “Fragile phase stability in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals: A comparison of [001] and [110] field-cooled phase diagrams,” Phys. Rev. B 73, 184110 (2006).
    [CrossRef]
  5. S. T. Johnson, “Dynamic linear electro-optic frequency dependence in PMN-32%PT and PZN-8%PT for RF microwave photonics,” Ph.D. dissertation (The Pennsylvania State University, 2005).
  6. Y. K. Zou, Q. S. Chen, R. Zhang, K. K. Li, and H. Jiang, “Low voltage, high repetition rate electro-optic Q-switch,” in Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuZ5.
  7. Q. R. Yin, J. W. Fang, H. S. Luo, and G. R. Li, “PMN-PT detector for electron acoustic imaging system,” in Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2000), pp. 569–572.
  8. Q. S. Chen, H. Jiang, Y. K. Zou, R. Zhang, and K. K. Li, “Fast, widely tunable electro-optic Fabry-Perot filter,” in Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2005), pp. 975–977.
  9. Y. B. Liao, Polarization Optics (Science Press, 2003).
  10. P. E. Shames, P. C. Sun, and Y. Fainman, “Modeling of scattering and depolarizing electro-optic devices I. Characterization of lanthanum-modified lead zirconate titanate,” Appl. Opt. 37, 3717–3725 (1998).
    [CrossRef]
  11. M. Title and S. H. Lee, “Modeling and characterization of embedded electrode performance in transverse electro-optic modulators,” Appl. Opt. 29, 85–98 (1990).
    [CrossRef]
  12. A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, “Piezo-induced sensitivity enhancements in electro-optic field sensors,” J. Appl. Phys. 98, 043113 (2005).
    [CrossRef]
  13. A. M. Glass and R. L. Abrams, “Study of piezoelectric oscillations in wideband pyroelectric LiTaO3 detectors,” J. Appl. Phys. 41, 4455–4459 (1970).
    [CrossRef]
  14. D. Boucher, M. Lagier, and C. Maerfeld, “Computation of the vibrational modes for piezoelectric array transducers using a mixed finite element-perturbation method,” IEEE Trans. Sonics Ultrason. 28, 318–329 (1981).
    [CrossRef]
  15. R. Lerch, “Simulation of piezoelectric devices by two- and three-dimensional finite elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 233–247 (1990).
    [CrossRef]
  16. W. Kang, S. L. Zheng, and X. M. Zhang, “Quadratic electro-optic characterization of Pb(Mgl/3Nb2/3)O3-PbTiO3 transparent ceramics,” in China-Japan Joint Microwave Conference Proceedings (IEEE, 2011), pp. 615–617.
  17. J. D. S. Guerra, E. B. Araújo, C. A. Guarany, R. N. Reis, and E. C. Lima, “Features of dielectric response in PMN—PT ferroelectric ceramics,” J. Phys. D 41, 225504 (2008).
    [CrossRef]
  18. D. Goldring, Z. Zalevsky, E. Goldenberg, A. Shemer, and D. Mendlovic, “Optical characteristics of the compound PLZT,” Appl. Opt. 42, 6536–6543 (2003).
    [CrossRef]

2008 (1)

J. D. S. Guerra, E. B. Araújo, C. A. Guarany, R. N. Reis, and E. C. Lima, “Features of dielectric response in PMN—PT ferroelectric ceramics,” J. Phys. D 41, 225504 (2008).
[CrossRef]

2006 (2)

A. K. Singh, D. Pandey, and O. Zaharko, “Powder neutron diffraction study of phase transitions in and a phase diagram of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3,” Phys. Rev. B 74, 0241011 (2006).
[CrossRef]

H. Cao, J. F. Li, D. Viehland, and G. Y. Xu, “Fragile phase stability in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals: A comparison of [001] and [110] field-cooled phase diagrams,” Phys. Rev. B 73, 184110 (2006).
[CrossRef]

2005 (2)

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, “Piezo-induced sensitivity enhancements in electro-optic field sensors,” J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

2003 (1)

1998 (2)

K. Kusumoto and T. Sekiya, “Processing and properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutions from PbO- and MgO-excess compositions,” Mater. Res. Bull. 33, 1367–1375 (1998).
[CrossRef]

P. E. Shames, P. C. Sun, and Y. Fainman, “Modeling of scattering and depolarizing electro-optic devices I. Characterization of lanthanum-modified lead zirconate titanate,” Appl. Opt. 37, 3717–3725 (1998).
[CrossRef]

1990 (2)

M. Title and S. H. Lee, “Modeling and characterization of embedded electrode performance in transverse electro-optic modulators,” Appl. Opt. 29, 85–98 (1990).
[CrossRef]

R. Lerch, “Simulation of piezoelectric devices by two- and three-dimensional finite elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 233–247 (1990).
[CrossRef]

1981 (1)

D. Boucher, M. Lagier, and C. Maerfeld, “Computation of the vibrational modes for piezoelectric array transducers using a mixed finite element-perturbation method,” IEEE Trans. Sonics Ultrason. 28, 318–329 (1981).
[CrossRef]

1970 (1)

A. M. Glass and R. L. Abrams, “Study of piezoelectric oscillations in wideband pyroelectric LiTaO3 detectors,” J. Appl. Phys. 41, 4455–4459 (1970).
[CrossRef]

Abrams, R. L.

A. M. Glass and R. L. Abrams, “Study of piezoelectric oscillations in wideband pyroelectric LiTaO3 detectors,” J. Appl. Phys. 41, 4455–4459 (1970).
[CrossRef]

Araújo, E. B.

J. D. S. Guerra, E. B. Araújo, C. A. Guarany, R. N. Reis, and E. C. Lima, “Features of dielectric response in PMN—PT ferroelectric ceramics,” J. Phys. D 41, 225504 (2008).
[CrossRef]

Boucher, D.

D. Boucher, M. Lagier, and C. Maerfeld, “Computation of the vibrational modes for piezoelectric array transducers using a mixed finite element-perturbation method,” IEEE Trans. Sonics Ultrason. 28, 318–329 (1981).
[CrossRef]

Cao, H.

H. Cao, J. F. Li, D. Viehland, and G. Y. Xu, “Fragile phase stability in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals: A comparison of [001] and [110] field-cooled phase diagrams,” Phys. Rev. B 73, 184110 (2006).
[CrossRef]

Chen, Q.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Chen, Q. S.

Y. K. Zou, Q. S. Chen, R. Zhang, K. K. Li, and H. Jiang, “Low voltage, high repetition rate electro-optic Q-switch,” in Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuZ5.

Q. S. Chen, H. Jiang, Y. K. Zou, R. Zhang, and K. K. Li, “Fast, widely tunable electro-optic Fabry-Perot filter,” in Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2005), pp. 975–977.

Fainman, Y.

Fang, J. W.

Q. R. Yin, J. W. Fang, H. S. Luo, and G. R. Li, “PMN-PT detector for electron acoustic imaging system,” in Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2000), pp. 569–572.

Garzarella, A.

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, “Piezo-induced sensitivity enhancements in electro-optic field sensors,” J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

Glass, A. M.

A. M. Glass and R. L. Abrams, “Study of piezoelectric oscillations in wideband pyroelectric LiTaO3 detectors,” J. Appl. Phys. 41, 4455–4459 (1970).
[CrossRef]

Goldenberg, E.

Goldring, D.

Guarany, C. A.

J. D. S. Guerra, E. B. Araújo, C. A. Guarany, R. N. Reis, and E. C. Lima, “Features of dielectric response in PMN—PT ferroelectric ceramics,” J. Phys. D 41, 225504 (2008).
[CrossRef]

Guerra, J. D. S.

J. D. S. Guerra, E. B. Araújo, C. A. Guarany, R. N. Reis, and E. C. Lima, “Features of dielectric response in PMN—PT ferroelectric ceramics,” J. Phys. D 41, 225504 (2008).
[CrossRef]

Jiang, H.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Y. K. Zou, Q. S. Chen, R. Zhang, K. K. Li, and H. Jiang, “Low voltage, high repetition rate electro-optic Q-switch,” in Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuZ5.

Q. S. Chen, H. Jiang, Y. K. Zou, R. Zhang, and K. K. Li, “Fast, widely tunable electro-optic Fabry-Perot filter,” in Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2005), pp. 975–977.

Johnson, S. T.

S. T. Johnson, “Dynamic linear electro-optic frequency dependence in PMN-32%PT and PZN-8%PT for RF microwave photonics,” Ph.D. dissertation (The Pennsylvania State University, 2005).

Kang, W.

W. Kang, S. L. Zheng, and X. M. Zhang, “Quadratic electro-optic characterization of Pb(Mgl/3Nb2/3)O3-PbTiO3 transparent ceramics,” in China-Japan Joint Microwave Conference Proceedings (IEEE, 2011), pp. 615–617.

Kusumoto, K.

K. Kusumoto and T. Sekiya, “Processing and properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutions from PbO- and MgO-excess compositions,” Mater. Res. Bull. 33, 1367–1375 (1998).
[CrossRef]

Lagier, M.

D. Boucher, M. Lagier, and C. Maerfeld, “Computation of the vibrational modes for piezoelectric array transducers using a mixed finite element-perturbation method,” IEEE Trans. Sonics Ultrason. 28, 318–329 (1981).
[CrossRef]

Lee, S. H.

Lerch, R.

R. Lerch, “Simulation of piezoelectric devices by two- and three-dimensional finite elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 233–247 (1990).
[CrossRef]

Li, G. R.

Q. R. Yin, J. W. Fang, H. S. Luo, and G. R. Li, “PMN-PT detector for electron acoustic imaging system,” in Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2000), pp. 569–572.

Li, J. F.

H. Cao, J. F. Li, D. Viehland, and G. Y. Xu, “Fragile phase stability in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals: A comparison of [001] and [110] field-cooled phase diagrams,” Phys. Rev. B 73, 184110 (2006).
[CrossRef]

Li, K. K.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Y. K. Zou, Q. S. Chen, R. Zhang, K. K. Li, and H. Jiang, “Low voltage, high repetition rate electro-optic Q-switch,” in Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuZ5.

Q. S. Chen, H. Jiang, Y. K. Zou, R. Zhang, and K. K. Li, “Fast, widely tunable electro-optic Fabry-Perot filter,” in Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2005), pp. 975–977.

Liao, Y. B.

Y. B. Liao, Polarization Optics (Science Press, 2003).

Lima, E. C.

J. D. S. Guerra, E. B. Araújo, C. A. Guarany, R. N. Reis, and E. C. Lima, “Features of dielectric response in PMN—PT ferroelectric ceramics,” J. Phys. D 41, 225504 (2008).
[CrossRef]

Luo, H. S.

Q. R. Yin, J. W. Fang, H. S. Luo, and G. R. Li, “PMN-PT detector for electron acoustic imaging system,” in Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2000), pp. 569–572.

Maerfeld, C.

D. Boucher, M. Lagier, and C. Maerfeld, “Computation of the vibrational modes for piezoelectric array transducers using a mixed finite element-perturbation method,” IEEE Trans. Sonics Ultrason. 28, 318–329 (1981).
[CrossRef]

Mendlovic, D.

Ming, H.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Pandey, D.

A. K. Singh, D. Pandey, and O. Zaharko, “Powder neutron diffraction study of phase transitions in and a phase diagram of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3,” Phys. Rev. B 74, 0241011 (2006).
[CrossRef]

Qadri, S. B.

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, “Piezo-induced sensitivity enhancements in electro-optic field sensors,” J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

Reis, R. N.

J. D. S. Guerra, E. B. Araújo, C. A. Guarany, R. N. Reis, and E. C. Lima, “Features of dielectric response in PMN—PT ferroelectric ceramics,” J. Phys. D 41, 225504 (2008).
[CrossRef]

Sekiya, T.

K. Kusumoto and T. Sekiya, “Processing and properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutions from PbO- and MgO-excess compositions,” Mater. Res. Bull. 33, 1367–1375 (1998).
[CrossRef]

Shames, P. E.

Shemer, A.

Singh, A. K.

A. K. Singh, D. Pandey, and O. Zaharko, “Powder neutron diffraction study of phase transitions in and a phase diagram of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3,” Phys. Rev. B 74, 0241011 (2006).
[CrossRef]

Sun, P. C.

Title, M.

Viehland, D.

H. Cao, J. F. Li, D. Viehland, and G. Y. Xu, “Fragile phase stability in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals: A comparison of [001] and [110] field-cooled phase diagrams,” Phys. Rev. B 73, 184110 (2006).
[CrossRef]

Wang, Y.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Wieting, T. J.

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, “Piezo-induced sensitivity enhancements in electro-optic field sensors,” J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

Wu, D. H.

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, “Piezo-induced sensitivity enhancements in electro-optic field sensors,” J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

Xu, G. Y.

H. Cao, J. F. Li, D. Viehland, and G. Y. Xu, “Fragile phase stability in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals: A comparison of [001] and [110] field-cooled phase diagrams,” Phys. Rev. B 73, 184110 (2006).
[CrossRef]

Yin, Q. R.

Q. R. Yin, J. W. Fang, H. S. Luo, and G. R. Li, “PMN-PT detector for electron acoustic imaging system,” in Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2000), pp. 569–572.

Zaharko, O.

A. K. Singh, D. Pandey, and O. Zaharko, “Powder neutron diffraction study of phase transitions in and a phase diagram of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3,” Phys. Rev. B 74, 0241011 (2006).
[CrossRef]

Zalevsky, Z.

Zhang, R.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Y. K. Zou, Q. S. Chen, R. Zhang, K. K. Li, and H. Jiang, “Low voltage, high repetition rate electro-optic Q-switch,” in Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuZ5.

Q. S. Chen, H. Jiang, Y. K. Zou, R. Zhang, and K. K. Li, “Fast, widely tunable electro-optic Fabry-Perot filter,” in Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2005), pp. 975–977.

Zhang, X. M.

W. Kang, S. L. Zheng, and X. M. Zhang, “Quadratic electro-optic characterization of Pb(Mgl/3Nb2/3)O3-PbTiO3 transparent ceramics,” in China-Japan Joint Microwave Conference Proceedings (IEEE, 2011), pp. 615–617.

Zheng, S. L.

W. Kang, S. L. Zheng, and X. M. Zhang, “Quadratic electro-optic characterization of Pb(Mgl/3Nb2/3)O3-PbTiO3 transparent ceramics,” in China-Japan Joint Microwave Conference Proceedings (IEEE, 2011), pp. 615–617.

Zheng, Z. Q.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Zou, Y. K.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Y. K. Zou, Q. S. Chen, R. Zhang, K. K. Li, and H. Jiang, “Low voltage, high repetition rate electro-optic Q-switch,” in Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuZ5.

Q. S. Chen, H. Jiang, Y. K. Zou, R. Zhang, and K. K. Li, “Fast, widely tunable electro-optic Fabry-Perot filter,” in Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2005), pp. 975–977.

Appl. Opt. (3)

IEEE Trans. Sonics Ultrason. (1)

D. Boucher, M. Lagier, and C. Maerfeld, “Computation of the vibrational modes for piezoelectric array transducers using a mixed finite element-perturbation method,” IEEE Trans. Sonics Ultrason. 28, 318–329 (1981).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

R. Lerch, “Simulation of piezoelectric devices by two- and three-dimensional finite elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 233–247 (1990).
[CrossRef]

J. Appl. Phys. (2)

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, “Piezo-induced sensitivity enhancements in electro-optic field sensors,” J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

A. M. Glass and R. L. Abrams, “Study of piezoelectric oscillations in wideband pyroelectric LiTaO3 detectors,” J. Appl. Phys. 41, 4455–4459 (1970).
[CrossRef]

J. Phys. D (1)

J. D. S. Guerra, E. B. Araújo, C. A. Guarany, R. N. Reis, and E. C. Lima, “Features of dielectric response in PMN—PT ferroelectric ceramics,” J. Phys. D 41, 225504 (2008).
[CrossRef]

Mater. Res. Bull. (1)

K. Kusumoto and T. Sekiya, “Processing and properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutions from PbO- and MgO-excess compositions,” Mater. Res. Bull. 33, 1367–1375 (1998).
[CrossRef]

Phys. Rev. B (2)

A. K. Singh, D. Pandey, and O. Zaharko, “Powder neutron diffraction study of phase transitions in and a phase diagram of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3,” Phys. Rev. B 74, 0241011 (2006).
[CrossRef]

H. Cao, J. F. Li, D. Viehland, and G. Y. Xu, “Fragile phase stability in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals: A comparison of [001] and [110] field-cooled phase diagrams,” Phys. Rev. B 73, 184110 (2006).
[CrossRef]

Proc. SPIE (1)

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Q. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[CrossRef]

Other (6)

W. Kang, S. L. Zheng, and X. M. Zhang, “Quadratic electro-optic characterization of Pb(Mgl/3Nb2/3)O3-PbTiO3 transparent ceramics,” in China-Japan Joint Microwave Conference Proceedings (IEEE, 2011), pp. 615–617.

S. T. Johnson, “Dynamic linear electro-optic frequency dependence in PMN-32%PT and PZN-8%PT for RF microwave photonics,” Ph.D. dissertation (The Pennsylvania State University, 2005).

Y. K. Zou, Q. S. Chen, R. Zhang, K. K. Li, and H. Jiang, “Low voltage, high repetition rate electro-optic Q-switch,” in Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuZ5.

Q. R. Yin, J. W. Fang, H. S. Luo, and G. R. Li, “PMN-PT detector for electron acoustic imaging system,” in Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2000), pp. 569–572.

Q. S. Chen, H. Jiang, Y. K. Zou, R. Zhang, and K. K. Li, “Fast, widely tunable electro-optic Fabry-Perot filter,” in Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2005), pp. 975–977.

Y. B. Liao, Polarization Optics (Science Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Illustration of PMN-PT sample.

Fig. 2.
Fig. 2.

Experiment setup.

Fig. 3.
Fig. 3.

DC voltage-induced intensity modulation. (a) P polarization, and (b) S polarization.

Fig. 4.
Fig. 4.

Frequency responses of PMN-PT samples with Vac-in=3Vpp. (a) Sample A: H×W×L=2×0.5×1mm3. (b) sample B: H×W×L=2×0.45×2mm3.

Fig. 5.
Fig. 5.

(a) Equivalent circuit when both AC and DC bias are applied and (b) AC voltage on PMN-PT versus AC frequency at different DC bias.

Fig. 6.
Fig. 6.

DC-induced effect under AC bias of sample A, (a) Vac-in=3Vpp, and (b) Vac-in=8Vpp.

Fig. 7.
Fig. 7.

Vπ versus frequency of AC signal. (a) Vac-in=3Vpp, (b) Vac-in=8Vpp.

Fig. 8.
Fig. 8.

Sensing sensitivity of PMN-PT ceramics at different frequencies, Vac-in=50mVpp, Vdc=70V. (a) f=80kHz, (b) f=215kHz, (c) f=320kHz, and (d) f=625kHz.

Fig. 9.
Fig. 9.

Output S/N ratio versus input AC signal.

Fig. 10.
Fig. 10.

Sensing sensitivity of PMN-PT ceramics for different AC signal magnitudes, f=625kHz, Vdc=70V. (a) Vac-in=0.2mVpp, and (b) Vac-in=1mVpp.

Fig. 11.
Fig. 11.

Sensing sensitivity of PMN-PT ceramics with different DC bias voltage, f=625kHz, Vac-in=1mVpp. (a) Vdc=115V, and (b) Vdc=155V.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δφ=(2π/λ)ΔnL=(π/λ)no3geoE2L=(π/λ)no3geo(VW)2L,
Is=0.5Ii(1+cosΔφ),
Ip=0.5Ii(1cosΔφ).
Vπ=λW2no3geoL.
Δφ=2πLλΔn=2πLλ[12no3geo(Edc+EacsinΩt)2+pdcEdc+pac(Ω)EacsinΩt],
Δφ=2πLλΔn=αEdc2+pdcEdc+12αEac2+[2αEdc+pac(Ω)]EacsinΩt12αEac2cos2Ωt.
Δφ=φ1+φ2sinΩtφ3cos2Ωt,
cosΔφ=cos(φ1+φ2sinΩt)cos(φ3cos2Ωt)+sin(φ1+φ2sinΩt)sin(φ3cos2Ωt).
cosΔφ2J1(φ2)J0(φ3)sinΩt.
cosΔφ[J0(φ3)J0(φ2)+2J0(φ3)J2(φ2)cos2Ωt].
Vπ=2Wpdc+(2Wpdc)28α(αVac22W2π)4α.

Metrics