Abstract

Microholographic memory is an attractive storage system for its capability to hold high-density data and for its access time. Using a photochromic chromophore (diarylethene)-doped recording medium can give rise to microholographic memory’s durability and contrast. In addition, it is possible to increase the microholographic memory’s density by shift-multiplexed recording, since a hologram pit is constructed in a small area. The microhologram was fabricated in the diarylethene-based sample with two counterpropagating focused beams. Also, surface images and cross-sectional images scanned by a confocal microscope indicated that shift-multiplexed recording was achieved in high contrast.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Yang and M. R. Wang, “White light micrograting multiplexing for high density data storage,” Opt. Lett. 31, 1304–1306 (2006).
    [CrossRef]
  2. B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009).
    [CrossRef]
  3. F. Gauttari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, and C. Carré, “Balanced homodyne detection of Bragg microholograms in photopolymer for data storage,” Opt. Express 15, 2234–2243 (2007).
    [CrossRef]
  4. I. S. Steinberg, V. A. Loskutov, V. V. Shelkovnikov, and Y. A. Shepetkin, “Two-photon recording of microholograms in photopolymer materials with new cationic thioxanthone photoinitiators,” Opt. Commun. 281, 4297–4301 (2008).
    [CrossRef]
  5. Z. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express 15, 1732–1737 (2007).
    [CrossRef]
  6. R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
    [CrossRef]
  7. S. Orlic, E. Dietz, S. Frohmann, and J. Rass, “Resolution-limited optical recording in 3D,” Opt. Express 19, 16096–16105 (2011).
    [CrossRef]
  8. B. Gombkötő, Z. Nagy, P. Koppa, and E. Lőrincz, “Modeling high density microholographic data storage: using linear, quadratic, thresholding and hard clipping material characteristics,” Opt. Commun. 281, 4261–4267 (2008).
    [CrossRef]
  9. J. Mysliwiec, M. Ziemienczuk, and A. Miniewicz, “Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules,” Opt. Mater. 33, 1382–1386 (2011).
    [CrossRef]
  10. N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
    [CrossRef]
  11. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
    [CrossRef]
  12. N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138, 210–213 (2007).
    [CrossRef]
  13. C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. C 12, 106–125 (2011).
    [CrossRef]
  14. S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
    [CrossRef]
  15. C. Egami and Y. Liu, “Laser fabrication of high-aspect-ratio holes and grooves in photoresist by time constant manipulation,” Opt. Commun. 280, 188–191 (2007).
    [CrossRef]
  16. W. J. Tomlinson, “Dynamics of photochromic conversion in optically thick samples: theory,” Appl. Opt. 15, 821–826(1976).
    [CrossRef]
  17. W. J. Tomlinson, “Analyses of bit-oriented optical memories using photochromic media,” Appl. Opt. 23, 3990–3993(1984).
    [CrossRef]
  18. T. Tsujioka, M. Kume, and M. Irie, “Photochromic reactions of a diarylethene derivative in polymer matrices,” J. Photochem. Photobiol. A 104, 203–206 (1997).
    [CrossRef]
  19. T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution optical memory using saturable absorption dye,” Opt. Rev. 2, 225–228 (1995).
    [CrossRef]
  20. T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007).
    [CrossRef]

2011

J. Mysliwiec, M. Ziemienczuk, and A. Miniewicz, “Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules,” Opt. Mater. 33, 1382–1386 (2011).
[CrossRef]

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. C 12, 106–125 (2011).
[CrossRef]

S. Orlic, E. Dietz, S. Frohmann, and J. Rass, “Resolution-limited optical recording in 3D,” Opt. Express 19, 16096–16105 (2011).
[CrossRef]

2010

N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
[CrossRef]

2009

B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009).
[CrossRef]

2008

I. S. Steinberg, V. A. Loskutov, V. V. Shelkovnikov, and Y. A. Shepetkin, “Two-photon recording of microholograms in photopolymer materials with new cationic thioxanthone photoinitiators,” Opt. Commun. 281, 4297–4301 (2008).
[CrossRef]

B. Gombkötő, Z. Nagy, P. Koppa, and E. Lőrincz, “Modeling high density microholographic data storage: using linear, quadratic, thresholding and hard clipping material characteristics,” Opt. Commun. 281, 4261–4267 (2008).
[CrossRef]

2007

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138, 210–213 (2007).
[CrossRef]

Z. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express 15, 1732–1737 (2007).
[CrossRef]

F. Gauttari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, and C. Carré, “Balanced homodyne detection of Bragg microholograms in photopolymer for data storage,” Opt. Express 15, 2234–2243 (2007).
[CrossRef]

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

C. Egami and Y. Liu, “Laser fabrication of high-aspect-ratio holes and grooves in photoresist by time constant manipulation,” Opt. Commun. 280, 188–191 (2007).
[CrossRef]

T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007).
[CrossRef]

2006

J. J. Yang and M. R. Wang, “White light micrograting multiplexing for high density data storage,” Opt. Lett. 31, 1304–1306 (2006).
[CrossRef]

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

2000

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
[CrossRef]

1997

T. Tsujioka, M. Kume, and M. Irie, “Photochromic reactions of a diarylethene derivative in polymer matrices,” J. Photochem. Photobiol. A 104, 203–206 (1997).
[CrossRef]

1995

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution optical memory using saturable absorption dye,” Opt. Rev. 2, 225–228 (1995).
[CrossRef]

1984

1976

Arnaud, C.

Bertarelli, C.

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. C 12, 106–125 (2011).
[CrossRef]

Bianco, A.

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. C 12, 106–125 (2011).
[CrossRef]

Carré, C.

Castagna, R.

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. C 12, 106–125 (2011).
[CrossRef]

Chen, Y.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138, 210–213 (2007).
[CrossRef]

Contreras, K.

Das, B.

B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009).
[CrossRef]

Dietz, E.

Ebisuzaki, T.

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

Egami, C.

C. Egami and Y. Liu, “Laser fabrication of high-aspect-ratio holes and grooves in photoresist by time constant manipulation,” Opt. Commun. 280, 188–191 (2007).
[CrossRef]

Eichler, H. J.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Emoto, A.

N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
[CrossRef]

Frohmann, S.

Fukaminato, T.

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007).
[CrossRef]

Gauttari, F.

Gombköto, B.

B. Gombkötő, Z. Nagy, P. Koppa, and E. Lőrincz, “Modeling high density microholographic data storage: using linear, quadratic, thresholding and hard clipping material characteristics,” Opt. Commun. 281, 4261–4267 (2008).
[CrossRef]

Harada, T.

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution optical memory using saturable absorption dye,” Opt. Rev. 2, 225–228 (1995).
[CrossRef]

Howard, R.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Irie, M.

T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007).
[CrossRef]

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Photochromic reactions of a diarylethene derivative in polymer matrices,” J. Photochem. Photobiol. A 104, 203–206 (1997).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution optical memory using saturable absorption dye,” Opt. Rev. 2, 225–228 (1995).
[CrossRef]

Iwata, Y.

T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007).
[CrossRef]

Jallapuram, R.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Joseph, J.

B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009).
[CrossRef]

Jradi, S.

Kanda, K.

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

Kawatsuki, N.

N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
[CrossRef]

Kobayashi, T.

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

Kondo, M.

N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
[CrossRef]

Koppa, P.

B. Gombkötő, Z. Nagy, P. Koppa, and E. Lőrincz, “Modeling high density microholographic data storage: using linear, quadratic, thresholding and hard clipping material characteristics,” Opt. Commun. 281, 4261–4267 (2008).
[CrossRef]

Z. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express 15, 1732–1737 (2007).
[CrossRef]

Kume, M.

T. Tsujioka, M. Kume, and M. Irie, “Photochromic reactions of a diarylethene derivative in polymer matrices,” J. Photochem. Photobiol. A 104, 203–206 (1997).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution optical memory using saturable absorption dye,” Opt. Rev. 2, 225–228 (1995).
[CrossRef]

Kuroki, K.

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution optical memory using saturable absorption dye,” Opt. Rev. 2, 225–228 (1995).
[CrossRef]

Lie, M.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138, 210–213 (2007).
[CrossRef]

Liu, Y.

C. Egami and Y. Liu, “Laser fabrication of high-aspect-ratio holes and grooves in photoresist by time constant manipulation,” Opt. Commun. 280, 188–191 (2007).
[CrossRef]

Lorincz, E.

B. Gombkötő, Z. Nagy, P. Koppa, and E. Lőrincz, “Modeling high density microholographic data storage: using linear, quadratic, thresholding and hard clipping material characteristics,” Opt. Commun. 281, 4261–4267 (2008).
[CrossRef]

Loskutov, V. A.

I. S. Steinberg, V. A. Loskutov, V. V. Shelkovnikov, and Y. A. Shepetkin, “Two-photon recording of microholograms in photopolymer materials with new cationic thioxanthone photoinitiators,” Opt. Commun. 281, 4297–4301 (2008).
[CrossRef]

Maire, G.

Manabe, S.

N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
[CrossRef]

Martin, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Matsui, S.

N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
[CrossRef]

Miniewicz, A.

J. Mysliwiec, M. Ziemienczuk, and A. Miniewicz, “Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules,” Opt. Mater. 33, 1382–1386 (2011).
[CrossRef]

Mysliwiec, J.

J. Mysliwiec, M. Ziemienczuk, and A. Miniewicz, “Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules,” Opt. Mater. 33, 1382–1386 (2011).
[CrossRef]

Nagy, Z.

B. Gombkötő, Z. Nagy, P. Koppa, and E. Lőrincz, “Modeling high density microholographic data storage: using linear, quadratic, thresholding and hard clipping material characteristics,” Opt. Commun. 281, 4261–4267 (2008).
[CrossRef]

Z. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express 15, 1732–1737 (2007).
[CrossRef]

Nakamura, S.

T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007).
[CrossRef]

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

Naydenova, I.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Okada, M.

N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
[CrossRef]

Ono, H.

N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
[CrossRef]

Orlic, S.

Pariani, G.

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. C 12, 106–125 (2011).
[CrossRef]

Pauliat, G.

Rass, J.

Roosen, G.

Ryuo, K.

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

Shelkovnikov, V. V.

I. S. Steinberg, V. A. Loskutov, V. V. Shelkovnikov, and Y. A. Shepetkin, “Two-photon recording of microholograms in photopolymer materials with new cationic thioxanthone photoinitiators,” Opt. Commun. 281, 4297–4301 (2008).
[CrossRef]

Shepetkin, Y. A.

I. S. Steinberg, V. A. Loskutov, V. V. Shelkovnikov, and Y. A. Shepetkin, “Two-photon recording of microholograms in photopolymer materials with new cationic thioxanthone photoinitiators,” Opt. Commun. 281, 4297–4301 (2008).
[CrossRef]

Singh, K.

B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009).
[CrossRef]

Steinberg, I. S.

I. S. Steinberg, V. A. Loskutov, V. V. Shelkovnikov, and Y. A. Shepetkin, “Two-photon recording of microholograms in photopolymer materials with new cationic thioxanthone photoinitiators,” Opt. Commun. 281, 4297–4301 (2008).
[CrossRef]

Tachikawa, M.

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

Tashima, A.

N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
[CrossRef]

Toal, V.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Tomlinson, W. J.

Tsujioka, T.

T. Tsujioka, M. Kume, and M. Irie, “Photochromic reactions of a diarylethene derivative in polymer matrices,” J. Photochem. Photobiol. A 104, 203–206 (1997).
[CrossRef]

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution optical memory using saturable absorption dye,” Opt. Rev. 2, 225–228 (1995).
[CrossRef]

Ujhelyi, F.

Umemoto, T.

T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007).
[CrossRef]

Wang, M. R.

Xie, N.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138, 210–213 (2007).
[CrossRef]

Yang, J. J.

Yao, B.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138, 210–213 (2007).
[CrossRef]

Yokojima, S.

T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007).
[CrossRef]

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

Yoneyama, M.

T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007).
[CrossRef]

Ziemienczuk, M.

J. Mysliwiec, M. Ziemienczuk, and A. Miniewicz, “Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules,” Opt. Mater. 33, 1382–1386 (2011).
[CrossRef]

Appl. Opt.

Chem. Rev.

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
[CrossRef]

J. Am. Chem. Soc.

T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007).
[CrossRef]

J. Photochem. Photobiol. A

T. Tsujioka, M. Kume, and M. Irie, “Photochromic reactions of a diarylethene derivative in polymer matrices,” J. Photochem. Photobiol. A 104, 203–206 (1997).
[CrossRef]

J. Photochem. Photobiol. C

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. C 12, 106–125 (2011).
[CrossRef]

Mater. Sci. Eng. B

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138, 210–213 (2007).
[CrossRef]

Opt. Commun.

B. Gombkötő, Z. Nagy, P. Koppa, and E. Lőrincz, “Modeling high density microholographic data storage: using linear, quadratic, thresholding and hard clipping material characteristics,” Opt. Commun. 281, 4261–4267 (2008).
[CrossRef]

C. Egami and Y. Liu, “Laser fabrication of high-aspect-ratio holes and grooves in photoresist by time constant manipulation,” Opt. Commun. 280, 188–191 (2007).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009).
[CrossRef]

I. S. Steinberg, V. A. Loskutov, V. V. Shelkovnikov, and Y. A. Shepetkin, “Two-photon recording of microholograms in photopolymer materials with new cationic thioxanthone photoinitiators,” Opt. Commun. 281, 4297–4301 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

J. Mysliwiec, M. Ziemienczuk, and A. Miniewicz, “Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules,” Opt. Mater. 33, 1382–1386 (2011).
[CrossRef]

Opt. Rev.

T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution optical memory using saturable absorption dye,” Opt. Rev. 2, 225–228 (1995).
[CrossRef]

Phys. E

S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007).
[CrossRef]

React. Funct. Polym.

N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Structural formulas of diarylethene in ring-opening structure and a ring-closing structure.

Fig. 2.
Fig. 2.

Simplified energy diagram of diarylethene.

Fig. 3.
Fig. 3.

Profiles of absorbance spectrums of diarylethene. (a) Diarylethene in ring-opening structure. (b) Diarylethene in ring-closing structure.

Fig. 4.
Fig. 4.

Profile of sensitivity curve on exposure to blue laser (λ=73nm).

Fig. 5.
Fig. 5.

(a) Experimental setup for counterpropagating hologram recording with a confocal microscope embedded. (b) Measurement for axial resolution of the confocal microscope.

Fig. 6.
Fig. 6.

Schematic image of shift-multiplexed exposures in lateral and axial directions.

Fig. 7.
Fig. 7.

(a) Experimental setup for a confocal microscope measuring a microhologram. (b) Measurement of the confocal microscope.

Fig. 8.
Fig. 8.

Scanned images where lateral-shift-multiplexed microholograms are recorded. (a) Widely scanned image of a surface of the sample: numbers represent each individual exposed spot. (b) Surface images at each exposed spot. (c) Cross-sectional images at each exposed spot. (d) Magnified image of a periodic structure at the center of the exposed spot.

Fig. 9.
Fig. 9.

Scanned images where axial-shift-multiplexed microholograms are recorded. (a) Surface image at an exposed spot. (b) Cross-sectional image at the exposed spot: the upper place represents an exposed place at the surface, and the lower place represents another exposed place inside the sample. (c) Images of each periodic structure at the center of the exposed places.

Tables (1)

Tables Icon

Table 1. Refractive Index Differences between a Ring-Opening Structure and a Ring-Closing Structure Measured by Two Lasers: a LD for Measurement, a Blue Laser for Exposure

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

dNClose(t)dt=IωσOϕOBNOpen(t)IωσCϕCBNClose(t),
N0=NOpen(t)+NClose(t),
dNClose(t)dt=Iω(σCϕCB+σOϕOB)NClose(t)+IωσOϕOBN0=αNClose(t)+βN0,
α=Iω(σOϕOB+σCϕCB),β=IωσOϕOB.
NClose(t)=βαN0(1eαt).
NClose()=βαN0=σOϕOBσOϕOB+σCϕCBN0.
NOpen()=N0NClose()=σCϕCBσOϕOB+σCϕCBN0.
IOut=Iinexp[{σONOpen(t)+σCNClose(t)}L],
T=IoutIin=exp[{σON0+(σCσO)βαN0(1eαt)}L].
(IoutIin)t=0=exp(σON0L),
(IoutIin)t==exp[{σON0+(σCσO)σOϕOBσOϕOB+σCϕCBN0}L].
ω0=2λπfD,
I0=P2πω02,
L2=L1n12NA21NA2,
ε=1.22×λNA,

Metrics