Abstract

Attenuated total reflectance Fourier transform infrared spectroscopy is used to monitor the adsorption of 100 nm 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) phospholipid vesicles to the surfaces of Ge, electrolessly deposited Au, and a well formed self-assembled monolayer of 1-octadecanethiol. The interaction of DPPC vesicles in solution with these different surfaces yields distinctly different surface structures: intact DPPC vesicles on Ge, a supported phospholipid bilayer on an electrolessly deposited Au surface, and a phospholipid monolayer onto the hydrophobic self-assembled monolayer. IR peak position, bandwidth, and intensity are used to confirm structure formation and quantitation of the amount of lipid that desorbs during film formation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ataka and J. Heberle, “Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer,” in Papers from the 11th European Conference on the Spectroscopy of Biological Molecules (Wiley, 2006), pp. 415–419.
  2. N. J. Cho, C. W. Frank, B. Kasemo, and F. Hook, “Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates,” Nat. Protoc. 5, 1096–1106 (2010).
    [CrossRef]
  3. C. A. Keller, K. Glasmastar, V. P. Zhdanov, and B. Kasemo, “Formation of supported membranes from vesicles,” Phys. Rev. Lett. 84, 5443–5446 (2000).
    [CrossRef]
  4. A. Blume, “Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies,” Curr. Opin. Colloid Interface Sci. 1, 64–77 (1996).
    [CrossRef]
  5. L. Q. Zhang, M. L. Longo, and P. Stroeve, “Mobile phospholipid bilayers on a polyion/alkylthiol layer pair,” Langmuir 16, 5093–5099 (2000).
    [CrossRef]
  6. R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85, 3035–3047 (2003).
    [CrossRef]
  7. H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006).
    [CrossRef]
  8. J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
    [CrossRef]
  9. E. Kalb, S. Frey, and L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
    [CrossRef]
  10. C. A. Keller and B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance,” Biophys. J. 75, 1397–1402 (1998).
    [CrossRef]
  11. E. Reimhult, M. Zach, F. Hook, and B. Kasemo, “A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2,” Langmuir 22, 3313–3319 (2006).
    [CrossRef]
  12. S. Trepout, S. Mornet, H. Benabdelhak, A. Ducruix, A. R. Brisson, and O. Lambert, “Membrane protein selectively oriented on solid support and reconstituted into a lipid membrane,” Langmuir 23, 2647–2654 (2007).
    [CrossRef]
  13. I. Pfeiffer, S. Petronis, I. Koper, B. Kasemo, and M. Zach, “Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces,” J. Phys. Chem. B 114, 4623–4631 (2010).
    [CrossRef]
  14. A. R. Hind, S. K. Bhargava, and A. McKinnon, “At the solid/liquid interface: FTIR/ATR—the tool of choice,” Adv. Colloid Interface Sci. 93, 91–114 (2001).
    [CrossRef]
  15. Y. Er, C. A. Prestidge, and D. Fronasiero, “Attenuated total reflectance infrared studies of liposome adsorption at the solid–liquid interface,” Colloids Surf. B 36, 147–153 (2004).
    [CrossRef]
  16. P. R. Brejna, P. R. Griffiths, and J. Yang, “Nanostructural silver and gold substrates for surface-enhanced Raman spectroscopy measurements prepared by galvanic displacement on germanium disks,” Appl. Spectrosc. 63, 396–400 (2009).
    [CrossRef]
  17. A. N. Parikh, J. D. Beers, A. P. Shreve, and B. I. Swanson, “Infrared spectroscopic characterization of lipid-alkylsiloxane hybrid bilayer membranes at oxide substrates,” Langmuir 15, 5369–5381 (1999).
    [CrossRef]
  18. C. Chen and C. P. Tripp, “An infrared spectroscopic based method to measure membrane permeance in liposomes,” Biochim. Biophys. Acta 1778, 2266–2272 (2008).
    [CrossRef]
  19. M. Sundh, S. Svedhem, and D. S. Sutherland, “Influence of phase separating lipids on supported lipid bilayer formation at SiO(2) surfaces,” Phys. Chem. Chem. Phys. 12, 453–460 (2010).
    [CrossRef]
  20. C. H. Jiang, A. Gamarnik, and C. P. Tripp, “Identification of lipid aggregate structures on TiO2 surface using headgroup IR bands,” J. Phys. Chem. B 109, 4539–4544 (2005).
    [CrossRef]
  21. H. L. Casal and H. H. Mantsch, “Polymorphic phase-behavior of phospholipid-membranes studied by infrared-spectroscopy,” Biochim. Biophys. Acta 779, 381–401 (1984).
    [CrossRef]

2010 (3)

N. J. Cho, C. W. Frank, B. Kasemo, and F. Hook, “Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates,” Nat. Protoc. 5, 1096–1106 (2010).
[CrossRef]

I. Pfeiffer, S. Petronis, I. Koper, B. Kasemo, and M. Zach, “Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces,” J. Phys. Chem. B 114, 4623–4631 (2010).
[CrossRef]

M. Sundh, S. Svedhem, and D. S. Sutherland, “Influence of phase separating lipids on supported lipid bilayer formation at SiO(2) surfaces,” Phys. Chem. Chem. Phys. 12, 453–460 (2010).
[CrossRef]

2009 (1)

2008 (1)

C. Chen and C. P. Tripp, “An infrared spectroscopic based method to measure membrane permeance in liposomes,” Biochim. Biophys. Acta 1778, 2266–2272 (2008).
[CrossRef]

2007 (1)

S. Trepout, S. Mornet, H. Benabdelhak, A. Ducruix, A. R. Brisson, and O. Lambert, “Membrane protein selectively oriented on solid support and reconstituted into a lipid membrane,” Langmuir 23, 2647–2654 (2007).
[CrossRef]

2006 (2)

H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006).
[CrossRef]

E. Reimhult, M. Zach, F. Hook, and B. Kasemo, “A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2,” Langmuir 22, 3313–3319 (2006).
[CrossRef]

2005 (2)

J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
[CrossRef]

C. H. Jiang, A. Gamarnik, and C. P. Tripp, “Identification of lipid aggregate structures on TiO2 surface using headgroup IR bands,” J. Phys. Chem. B 109, 4539–4544 (2005).
[CrossRef]

2004 (1)

Y. Er, C. A. Prestidge, and D. Fronasiero, “Attenuated total reflectance infrared studies of liposome adsorption at the solid–liquid interface,” Colloids Surf. B 36, 147–153 (2004).
[CrossRef]

2003 (1)

R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85, 3035–3047 (2003).
[CrossRef]

2001 (1)

A. R. Hind, S. K. Bhargava, and A. McKinnon, “At the solid/liquid interface: FTIR/ATR—the tool of choice,” Adv. Colloid Interface Sci. 93, 91–114 (2001).
[CrossRef]

2000 (2)

L. Q. Zhang, M. L. Longo, and P. Stroeve, “Mobile phospholipid bilayers on a polyion/alkylthiol layer pair,” Langmuir 16, 5093–5099 (2000).
[CrossRef]

C. A. Keller, K. Glasmastar, V. P. Zhdanov, and B. Kasemo, “Formation of supported membranes from vesicles,” Phys. Rev. Lett. 84, 5443–5446 (2000).
[CrossRef]

1999 (1)

A. N. Parikh, J. D. Beers, A. P. Shreve, and B. I. Swanson, “Infrared spectroscopic characterization of lipid-alkylsiloxane hybrid bilayer membranes at oxide substrates,” Langmuir 15, 5369–5381 (1999).
[CrossRef]

1998 (1)

C. A. Keller and B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance,” Biophys. J. 75, 1397–1402 (1998).
[CrossRef]

1996 (1)

A. Blume, “Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies,” Curr. Opin. Colloid Interface Sci. 1, 64–77 (1996).
[CrossRef]

1992 (1)

E. Kalb, S. Frey, and L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
[CrossRef]

1984 (1)

H. L. Casal and H. H. Mantsch, “Polymorphic phase-behavior of phospholipid-membranes studied by infrared-spectroscopy,” Biochim. Biophys. Acta 779, 381–401 (1984).
[CrossRef]

Abbott, N. L.

J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
[CrossRef]

Ataka, K.

K. Ataka and J. Heberle, “Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer,” in Papers from the 11th European Conference on the Spectroscopy of Biological Molecules (Wiley, 2006), pp. 415–419.

Beers, J. D.

A. N. Parikh, J. D. Beers, A. P. Shreve, and B. I. Swanson, “Infrared spectroscopic characterization of lipid-alkylsiloxane hybrid bilayer membranes at oxide substrates,” Langmuir 15, 5369–5381 (1999).
[CrossRef]

Benabdelhak, H.

S. Trepout, S. Mornet, H. Benabdelhak, A. Ducruix, A. R. Brisson, and O. Lambert, “Membrane protein selectively oriented on solid support and reconstituted into a lipid membrane,” Langmuir 23, 2647–2654 (2007).
[CrossRef]

Bhargava, S. K.

A. R. Hind, S. K. Bhargava, and A. McKinnon, “At the solid/liquid interface: FTIR/ATR—the tool of choice,” Adv. Colloid Interface Sci. 93, 91–114 (2001).
[CrossRef]

Blume, A.

A. Blume, “Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies,” Curr. Opin. Colloid Interface Sci. 1, 64–77 (1996).
[CrossRef]

Brake, J. M.

J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
[CrossRef]

Brejna, P. R.

Brisson, A.

R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85, 3035–3047 (2003).
[CrossRef]

Brisson, A. R.

S. Trepout, S. Mornet, H. Benabdelhak, A. Ducruix, A. R. Brisson, and O. Lambert, “Membrane protein selectively oriented on solid support and reconstituted into a lipid membrane,” Langmuir 23, 2647–2654 (2007).
[CrossRef]

Casal, H. L.

H. L. Casal and H. H. Mantsch, “Polymorphic phase-behavior of phospholipid-membranes studied by infrared-spectroscopy,” Biochim. Biophys. Acta 779, 381–401 (1984).
[CrossRef]

Chen, C.

C. Chen and C. P. Tripp, “An infrared spectroscopic based method to measure membrane permeance in liposomes,” Biochim. Biophys. Acta 1778, 2266–2272 (2008).
[CrossRef]

Cho, N. J.

N. J. Cho, C. W. Frank, B. Kasemo, and F. Hook, “Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates,” Nat. Protoc. 5, 1096–1106 (2010).
[CrossRef]

Daschner, M. K.

J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
[CrossRef]

Ducruix, A.

S. Trepout, S. Mornet, H. Benabdelhak, A. Ducruix, A. R. Brisson, and O. Lambert, “Membrane protein selectively oriented on solid support and reconstituted into a lipid membrane,” Langmuir 23, 2647–2654 (2007).
[CrossRef]

Er, Y.

Y. Er, C. A. Prestidge, and D. Fronasiero, “Attenuated total reflectance infrared studies of liposome adsorption at the solid–liquid interface,” Colloids Surf. B 36, 147–153 (2004).
[CrossRef]

Frank, C. W.

N. J. Cho, C. W. Frank, B. Kasemo, and F. Hook, “Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates,” Nat. Protoc. 5, 1096–1106 (2010).
[CrossRef]

Frey, S.

E. Kalb, S. Frey, and L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
[CrossRef]

Fronasiero, D.

Y. Er, C. A. Prestidge, and D. Fronasiero, “Attenuated total reflectance infrared studies of liposome adsorption at the solid–liquid interface,” Colloids Surf. B 36, 147–153 (2004).
[CrossRef]

Gamarnik, A.

C. H. Jiang, A. Gamarnik, and C. P. Tripp, “Identification of lipid aggregate structures on TiO2 surface using headgroup IR bands,” J. Phys. Chem. B 109, 4539–4544 (2005).
[CrossRef]

Glasmastar, K.

C. A. Keller, K. Glasmastar, V. P. Zhdanov, and B. Kasemo, “Formation of supported membranes from vesicles,” Phys. Rev. Lett. 84, 5443–5446 (2000).
[CrossRef]

Griffiths, P. R.

Heberle, J.

K. Ataka and J. Heberle, “Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer,” in Papers from the 11th European Conference on the Spectroscopy of Biological Molecules (Wiley, 2006), pp. 415–419.

Hind, A. R.

A. R. Hind, S. K. Bhargava, and A. McKinnon, “At the solid/liquid interface: FTIR/ATR—the tool of choice,” Adv. Colloid Interface Sci. 93, 91–114 (2001).
[CrossRef]

Hook, F.

N. J. Cho, C. W. Frank, B. Kasemo, and F. Hook, “Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates,” Nat. Protoc. 5, 1096–1106 (2010).
[CrossRef]

E. Reimhult, M. Zach, F. Hook, and B. Kasemo, “A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2,” Langmuir 22, 3313–3319 (2006).
[CrossRef]

Jiang, C. H.

C. H. Jiang, A. Gamarnik, and C. P. Tripp, “Identification of lipid aggregate structures on TiO2 surface using headgroup IR bands,” J. Phys. Chem. B 109, 4539–4544 (2005).
[CrossRef]

Jung, H.

H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006).
[CrossRef]

Kalb, E.

E. Kalb, S. Frey, and L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
[CrossRef]

Kasemo, B.

I. Pfeiffer, S. Petronis, I. Koper, B. Kasemo, and M. Zach, “Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces,” J. Phys. Chem. B 114, 4623–4631 (2010).
[CrossRef]

N. J. Cho, C. W. Frank, B. Kasemo, and F. Hook, “Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates,” Nat. Protoc. 5, 1096–1106 (2010).
[CrossRef]

E. Reimhult, M. Zach, F. Hook, and B. Kasemo, “A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2,” Langmuir 22, 3313–3319 (2006).
[CrossRef]

C. A. Keller, K. Glasmastar, V. P. Zhdanov, and B. Kasemo, “Formation of supported membranes from vesicles,” Phys. Rev. Lett. 84, 5443–5446 (2000).
[CrossRef]

C. A. Keller and B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance,” Biophys. J. 75, 1397–1402 (1998).
[CrossRef]

Kawai, T.

H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006).
[CrossRef]

Keller, C. A.

C. A. Keller, K. Glasmastar, V. P. Zhdanov, and B. Kasemo, “Formation of supported membranes from vesicles,” Phys. Rev. Lett. 84, 5443–5446 (2000).
[CrossRef]

C. A. Keller and B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance,” Biophys. J. 75, 1397–1402 (1998).
[CrossRef]

Kim, J.

H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006).
[CrossRef]

Koper, I.

I. Pfeiffer, S. Petronis, I. Koper, B. Kasemo, and M. Zach, “Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces,” J. Phys. Chem. B 114, 4623–4631 (2010).
[CrossRef]

Kuboi, R.

H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006).
[CrossRef]

Lambert, O.

S. Trepout, S. Mornet, H. Benabdelhak, A. Ducruix, A. R. Brisson, and O. Lambert, “Membrane protein selectively oriented on solid support and reconstituted into a lipid membrane,” Langmuir 23, 2647–2654 (2007).
[CrossRef]

Lee, H.

H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006).
[CrossRef]

Lee, S.

H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006).
[CrossRef]

Longo, M. L.

L. Q. Zhang, M. L. Longo, and P. Stroeve, “Mobile phospholipid bilayers on a polyion/alkylthiol layer pair,” Langmuir 16, 5093–5099 (2000).
[CrossRef]

Mantsch, H. H.

H. L. Casal and H. H. Mantsch, “Polymorphic phase-behavior of phospholipid-membranes studied by infrared-spectroscopy,” Biochim. Biophys. Acta 779, 381–401 (1984).
[CrossRef]

McKinnon, A.

A. R. Hind, S. K. Bhargava, and A. McKinnon, “At the solid/liquid interface: FTIR/ATR—the tool of choice,” Adv. Colloid Interface Sci. 93, 91–114 (2001).
[CrossRef]

Mornet, S.

S. Trepout, S. Mornet, H. Benabdelhak, A. Ducruix, A. R. Brisson, and O. Lambert, “Membrane protein selectively oriented on solid support and reconstituted into a lipid membrane,” Langmuir 23, 2647–2654 (2007).
[CrossRef]

Mukhopadhyay, A.

R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85, 3035–3047 (2003).
[CrossRef]

Parikh, A. N.

A. N. Parikh, J. D. Beers, A. P. Shreve, and B. I. Swanson, “Infrared spectroscopic characterization of lipid-alkylsiloxane hybrid bilayer membranes at oxide substrates,” Langmuir 15, 5369–5381 (1999).
[CrossRef]

Park, J.

H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006).
[CrossRef]

Petronis, S.

I. Pfeiffer, S. Petronis, I. Koper, B. Kasemo, and M. Zach, “Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces,” J. Phys. Chem. B 114, 4623–4631 (2010).
[CrossRef]

Pfeiffer, I.

I. Pfeiffer, S. Petronis, I. Koper, B. Kasemo, and M. Zach, “Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces,” J. Phys. Chem. B 114, 4623–4631 (2010).
[CrossRef]

Prestidge, C. A.

Y. Er, C. A. Prestidge, and D. Fronasiero, “Attenuated total reflectance infrared studies of liposome adsorption at the solid–liquid interface,” Colloids Surf. B 36, 147–153 (2004).
[CrossRef]

Reimhult, E.

E. Reimhult, M. Zach, F. Hook, and B. Kasemo, “A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2,” Langmuir 22, 3313–3319 (2006).
[CrossRef]

Richter, R.

R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85, 3035–3047 (2003).
[CrossRef]

Shreve, A. P.

A. N. Parikh, J. D. Beers, A. P. Shreve, and B. I. Swanson, “Infrared spectroscopic characterization of lipid-alkylsiloxane hybrid bilayer membranes at oxide substrates,” Langmuir 15, 5369–5381 (1999).
[CrossRef]

Stroeve, P.

L. Q. Zhang, M. L. Longo, and P. Stroeve, “Mobile phospholipid bilayers on a polyion/alkylthiol layer pair,” Langmuir 16, 5093–5099 (2000).
[CrossRef]

Sundh, M.

M. Sundh, S. Svedhem, and D. S. Sutherland, “Influence of phase separating lipids on supported lipid bilayer formation at SiO(2) surfaces,” Phys. Chem. Chem. Phys. 12, 453–460 (2010).
[CrossRef]

Sutherland, D. S.

M. Sundh, S. Svedhem, and D. S. Sutherland, “Influence of phase separating lipids on supported lipid bilayer formation at SiO(2) surfaces,” Phys. Chem. Chem. Phys. 12, 453–460 (2010).
[CrossRef]

Svedhem, S.

M. Sundh, S. Svedhem, and D. S. Sutherland, “Influence of phase separating lipids on supported lipid bilayer formation at SiO(2) surfaces,” Phys. Chem. Chem. Phys. 12, 453–460 (2010).
[CrossRef]

Swanson, B. I.

A. N. Parikh, J. D. Beers, A. P. Shreve, and B. I. Swanson, “Infrared spectroscopic characterization of lipid-alkylsiloxane hybrid bilayer membranes at oxide substrates,” Langmuir 15, 5369–5381 (1999).
[CrossRef]

Tamm, L. K.

E. Kalb, S. Frey, and L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
[CrossRef]

Trepout, S.

S. Trepout, S. Mornet, H. Benabdelhak, A. Ducruix, A. R. Brisson, and O. Lambert, “Membrane protein selectively oriented on solid support and reconstituted into a lipid membrane,” Langmuir 23, 2647–2654 (2007).
[CrossRef]

Tripp, C. P.

C. Chen and C. P. Tripp, “An infrared spectroscopic based method to measure membrane permeance in liposomes,” Biochim. Biophys. Acta 1778, 2266–2272 (2008).
[CrossRef]

C. H. Jiang, A. Gamarnik, and C. P. Tripp, “Identification of lipid aggregate structures on TiO2 surface using headgroup IR bands,” J. Phys. Chem. B 109, 4539–4544 (2005).
[CrossRef]

Yang, J.

Zach, M.

I. Pfeiffer, S. Petronis, I. Koper, B. Kasemo, and M. Zach, “Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces,” J. Phys. Chem. B 114, 4623–4631 (2010).
[CrossRef]

E. Reimhult, M. Zach, F. Hook, and B. Kasemo, “A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2,” Langmuir 22, 3313–3319 (2006).
[CrossRef]

Zhang, L. Q.

L. Q. Zhang, M. L. Longo, and P. Stroeve, “Mobile phospholipid bilayers on a polyion/alkylthiol layer pair,” Langmuir 16, 5093–5099 (2000).
[CrossRef]

Zhdanov, V. P.

C. A. Keller, K. Glasmastar, V. P. Zhdanov, and B. Kasemo, “Formation of supported membranes from vesicles,” Phys. Rev. Lett. 84, 5443–5446 (2000).
[CrossRef]

Adv. Colloid Interface Sci. (1)

A. R. Hind, S. K. Bhargava, and A. McKinnon, “At the solid/liquid interface: FTIR/ATR—the tool of choice,” Adv. Colloid Interface Sci. 93, 91–114 (2001).
[CrossRef]

Appl. Spectrosc. (1)

Biochim. Biophys. Acta (3)

H. L. Casal and H. H. Mantsch, “Polymorphic phase-behavior of phospholipid-membranes studied by infrared-spectroscopy,” Biochim. Biophys. Acta 779, 381–401 (1984).
[CrossRef]

C. Chen and C. P. Tripp, “An infrared spectroscopic based method to measure membrane permeance in liposomes,” Biochim. Biophys. Acta 1778, 2266–2272 (2008).
[CrossRef]

E. Kalb, S. Frey, and L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
[CrossRef]

Biophys. J. (2)

C. A. Keller and B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance,” Biophys. J. 75, 1397–1402 (1998).
[CrossRef]

R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85, 3035–3047 (2003).
[CrossRef]

Colloids Surf. B (1)

Y. Er, C. A. Prestidge, and D. Fronasiero, “Attenuated total reflectance infrared studies of liposome adsorption at the solid–liquid interface,” Colloids Surf. B 36, 147–153 (2004).
[CrossRef]

Curr. Opin. Colloid Interface Sci. (1)

A. Blume, “Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies,” Curr. Opin. Colloid Interface Sci. 1, 64–77 (1996).
[CrossRef]

J. Biosci. Bioeng. (1)

H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006).
[CrossRef]

J. Phys. Chem. B (2)

I. Pfeiffer, S. Petronis, I. Koper, B. Kasemo, and M. Zach, “Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces,” J. Phys. Chem. B 114, 4623–4631 (2010).
[CrossRef]

C. H. Jiang, A. Gamarnik, and C. P. Tripp, “Identification of lipid aggregate structures on TiO2 surface using headgroup IR bands,” J. Phys. Chem. B 109, 4539–4544 (2005).
[CrossRef]

Langmuir (5)

J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
[CrossRef]

A. N. Parikh, J. D. Beers, A. P. Shreve, and B. I. Swanson, “Infrared spectroscopic characterization of lipid-alkylsiloxane hybrid bilayer membranes at oxide substrates,” Langmuir 15, 5369–5381 (1999).
[CrossRef]

L. Q. Zhang, M. L. Longo, and P. Stroeve, “Mobile phospholipid bilayers on a polyion/alkylthiol layer pair,” Langmuir 16, 5093–5099 (2000).
[CrossRef]

E. Reimhult, M. Zach, F. Hook, and B. Kasemo, “A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2,” Langmuir 22, 3313–3319 (2006).
[CrossRef]

S. Trepout, S. Mornet, H. Benabdelhak, A. Ducruix, A. R. Brisson, and O. Lambert, “Membrane protein selectively oriented on solid support and reconstituted into a lipid membrane,” Langmuir 23, 2647–2654 (2007).
[CrossRef]

Nat. Protoc. (1)

N. J. Cho, C. W. Frank, B. Kasemo, and F. Hook, “Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates,” Nat. Protoc. 5, 1096–1106 (2010).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

M. Sundh, S. Svedhem, and D. S. Sutherland, “Influence of phase separating lipids on supported lipid bilayer formation at SiO(2) surfaces,” Phys. Chem. Chem. Phys. 12, 453–460 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

C. A. Keller, K. Glasmastar, V. P. Zhdanov, and B. Kasemo, “Formation of supported membranes from vesicles,” Phys. Rev. Lett. 84, 5443–5446 (2000).
[CrossRef]

Other (1)

K. Ataka and J. Heberle, “Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer,” in Papers from the 11th European Conference on the Spectroscopy of Biological Molecules (Wiley, 2006), pp. 415–419.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Selected regions of the infrared absorption spectra for (top) DPPC on Ge, (center) electrolessly deposited Au, and (bottom) ODT SAM are plotted. The inset scale bar next to the DPPC on Ge serves as a reference to the observed signal for the shown spectra. Drawn representations of the resulting aggregate structure are superimposed with the corresponding infrared spectra.

Fig. 2.
Fig. 2.

Integrated intensity for the CH2 symmetric stretch versus time while exposing the surfaces to vesicle solutions of DPPC adsorbing onto Ge (circles), electrolessly deposited Au (square), and ODT SAM (lozenges). Vesicle solutions flow for 40 min, with buffer solution flowing thereafter. On Au and ODT SAM, vesicles adsorb, then later rupture, and material is lost. On Ge, the adsorbed vesicles are stable for long periods of time.

Fig. 3.
Fig. 3.

Peak maximum for the CH2 symmetric stretch versus time while exposing the surfaces to vesicle solutions of DPPC adsorbing onto Ge (circles), electrolessly deposited Au (square), and ODT SAM (lozenges). Vesicle solutions flow for 40 min, with buffer solution flowing thereafter. In general, peak position decreases with increasing acyl chain order. Time dependent decreases in the band position for lipid aggregates on Au and ODT SAM are interpreted as increases in acyl chain ordering during the ripening of the lipid aggregates. The values representing the lipid aggregate on Ge exhibit a behavior that is time independent, interpreted as representing an adsorbed stable lipid aggregate.

Fig. 4.
Fig. 4.

FWHM for the CH2 symmetric stretch versus time while exposing the surfaces to vesicle solutions of DPPC adsorbing onto Ge (circles), electrolessly deposited Au (square), and ODT SAM (lozenges). Vesicle solutions flow for 40 min, with buffer solution flowing thereafter. The decreasing FWHM values observed for DPPC lipid aggregates on Au and ODT SAM are interpreted as increases in homogeneity within their hydrophobic domain as the films ripen. FWHM values for the DPPC lipid aggregate on Ge exhibit time independent behavior representative of a stable lipid aggregate.

Metrics