Abstract

In this paper, we have utilized Au nanoring chains in an SiO2 host to design certain T-and Y-structures, and expanded it to transport and split the electromagnetic energy in integrated nanophotonic devices operating at an optical communication band (λ1550nm). We compared two structures and tried to choose the best one, with lower losses and higher efficiency at the output branches, in order to split and transport the optical energy. Comparing the different types of nanoparticles corroborates that nanorings have an extra degree of tunability in their geometrical components. Meanwhile, nanorings show strong confinement in near-field coupling, less extinction coefficient, and also lower scattering into the far field during energy transportation at the C-band spectrum. Due to the nanoring’s particular properties, transportation losses would be lower than in other nanoparticle-based structures like nanospheres, nanorods, and nanodisks. We demonstrate that Au nanorings surrounded by an SiO2 host yield suitable conditions to excite surface Plasmons inside the metal. Comparison between Y-and T-splitters shows that the Y-splitter is a more suitable alternative than the T-splitter, with higher transmission efficiency and lower losses. In the Y-structure, the power ratio (time-averaged power across the surface) is 24.7%, and electromagnetic energy transportation takes place at group velocities in the vicinity of 30% of the velocity of light; transmission losses are γT=3dB/655nm and γT=3dB/443nm. In this work, we have applied the finite-difference time-domain method (FDTD) to simulate and indicate the properties of structures.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  3. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  4. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2002).
    [CrossRef]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. 19, 1501–1505(2001).
    [CrossRef]
  6. K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2nanoring plasmon waveguides at optical communication band,” IEEE J. Lightwave Technol. 9, 2757–2764(2007).
    [CrossRef]
  7. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
    [CrossRef]
  8. H. J. R. Dutton, Understanding Optical Communications (IBM, 1998).
  9. S. D. Gendey, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, 2010).
  10. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  11. J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of Plasmon resonance spectra from individualnanoparticles,” Nano Lett. 4, 485–491 (2003).
    [CrossRef]
  12. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  13. A. V. Krasavin and A. V Zayats, “Passive photonic elements based on dielectric-loaded surface Plasmon Polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
    [CrossRef]
  14. C. E. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33(2005).
  15. S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).
  16. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
    [CrossRef]
  17. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356 (2000).
    [CrossRef]

2008 (2)

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

2007 (2)

A. V. Krasavin and A. V Zayats, “Passive photonic elements based on dielectric-loaded surface Plasmon Polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2nanoring plasmon waveguides at optical communication band,” IEEE J. Lightwave Technol. 9, 2757–2764(2007).
[CrossRef]

2005 (1)

C. E. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33(2005).

2003 (1)

J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of Plasmon resonance spectra from individualnanoparticles,” Nano Lett. 4, 485–491 (2003).
[CrossRef]

2002 (1)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2002).
[CrossRef]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. 19, 1501–1505(2001).
[CrossRef]

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356 (2000).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. 19, 1501–1505(2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356 (2000).
[CrossRef]

Bolger, P.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Bozhevolnyi, S. I.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. 19, 1501–1505(2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356 (2000).
[CrossRef]

Chen, Z.

Dereux, A.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Dutton, H. J. R.

H. J. R. Dutton, Understanding Optical Communications (IBM, 1998).

Gendey, S. D.

S. D. Gendey, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, 2010).

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356 (2000).
[CrossRef]

Holmgaard, T.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Jung, K. Y.

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2nanoring plasmon waveguides at optical communication band,” IEEE J. Lightwave Technol. 9, 2757–2764(2007).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. 19, 1501–1505(2001).
[CrossRef]

Krasavin, A. V.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

A. V. Krasavin and A. V Zayats, “Passive photonic elements based on dielectric-loaded surface Plasmon Polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. 19, 1501–1505(2001).
[CrossRef]

S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).

Markey, L.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. 19, 1501–1505(2001).
[CrossRef]

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of Plasmon resonance spectra from individualnanoparticles,” Nano Lett. 4, 485–491 (2003).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Rayford, C. E.

C. E. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33(2005).

Reano, R. M.

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2nanoring plasmon waveguides at optical communication band,” IEEE J. Lightwave Technol. 9, 2757–2764(2007).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. 19, 1501–1505(2001).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Schatz, G.

C. E. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33(2005).

Schutz, S.

J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of Plasmon resonance spectra from individualnanoparticles,” Nano Lett. 4, 485–491 (2003).
[CrossRef]

Shuford, K.

C. E. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33(2005).

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of Plasmon resonance spectra from individualnanoparticles,” Nano Lett. 4, 485–491 (2003).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Teixeira, F. L.

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2nanoring plasmon waveguides at optical communication band,” IEEE J. Lightwave Technol. 9, 2757–2764(2007).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Zayast, A. V.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Zayats, A. V

A. V. Krasavin and A. V Zayats, “Passive photonic elements based on dielectric-loaded surface Plasmon Polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Zayats, A. V.

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. 19, 1501–1505(2001).
[CrossRef]

Appl. Phys. Lett. (1)

A. V. Krasavin and A. V Zayats, “Passive photonic elements based on dielectric-loaded surface Plasmon Polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

IEEE J. Lightwave Technol. (1)

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2nanoring plasmon waveguides at optical communication band,” IEEE J. Lightwave Technol. 9, 2757–2764(2007).
[CrossRef]

Nano Lett. (1)

J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of Plasmon resonance spectra from individualnanoparticles,” Nano Lett. 4, 485–491 (2003).
[CrossRef]

Nanoscape (1)

C. E. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33(2005).

Opt. Express (1)

Phys. Rev. B (3)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2002).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface Plasmon-Polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356 (2000).
[CrossRef]

Other (8)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

H. J. R. Dutton, Understanding Optical Communications (IBM, 1998).

S. D. Gendey, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, 2010).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

A snapshot of perspective (3D) view of nanoring chains as a T-structure, surrounded by an SiO2 host. The intercenter distance between two series nanorings is set to 330 nm, and the Gaussian source is established at the 330 nm distance from the first nanoring center. The arrow shows propagation direction of the Gaussian field.

Fig. 2.
Fig. 2.

Field intensity (the peak amplitude squared of the electric field) along the linear chain of the splitter (x axis) under T-mode excitation. The electromagnetic energy is divided into two equal parts due to the 90° corner.

Fig. 3.
Fig. 3.

Field intensity (the peak amplitude squared of the electric field) after the sharp corner of the splitter (y axis), in which transverse mode has been changed to longitudinal mode (L-mode). The field intensity is the same in each arm.

Fig. 4.
Fig. 4.

Real time-averaged power variations along the x axis (propagation direction), which are used for related calculations of power flow across the Plasmon waveguide surface.

Fig. 5.
Fig. 5.

Real time-averaged power variations along the y axis (after sharp corner), which are used for related calculations of power flow across the Plasmon waveguide surface. (Leads to approximately 46% power ratio at each branch.)

Fig. 6.
Fig. 6.

A snapshot of electric transverse mode (T-mode), which is changed to electric longitudinal mode (L-mode) due to the 90° corner of the structure.

Fig. 7.
Fig. 7.

Field intensity (the peak amplitude squared of the electric field) after the sharp corner of the splitter (y axis). Two-dimensional figure is used to calculate the transmission coefficient.

Fig. 8.
Fig. 8.

Real time-averaged power variations along the x axis (after sharp corner), which are used for related calculations of power flow across the Plasmon waveguide surface.

Fig. 9.
Fig. 9.

Real time-averaged power variations along the y axis (after sharp corner), which are used for related calculations of power flow across the Plasmon waveguide surface. (Leads to approximately 21% power ratio at each branch.)

Fig. 10.
Fig. 10.

Field intensity (the peak amplitude squared of the electric field) along the linear chain of the splitter (x axis). The electromagnetic energy could transport at high speed in comparison to the T-splitter.

Fig. 11.
Fig. 11.

Field intensity (the peak amplitude squared of the electric field) after the sharp corner of the splitter (y axis).

Fig. 12.
Fig. 12.

Real time-averaged power variations along the x axis (after sharp corner), which are used for related calculations of power flow across the Plasmon waveguide surface.

Fig. 13.
Fig. 13.

Real time-averaged power variations along the y axis (after sharp corner), which are used for related calculations of power flow across the Plasmon waveguide surface. (Leads to approximately 24.5% power ratio at each branch.)

Fig. 14.
Fig. 14.

Dispersion relation diagram for band structure (frequency verses propagation constant along x axis). The structure is not highly lossy due to the light line above the band structure. The slope of figure leads to light velocity of 0.26c0.

Tables (3)

Tables Icon

Table 1. Geometrical Parameter Sizes of an Au Nanoring in an SiO2 Substrate, to Use at λ=1550nm

Tables Icon

Table 2. Finite-Difference Time-Domain Method Parameter Description for Two-Branch T-Splitter

Tables Icon

Table 3. Finite-Difference Time-Domain Method Parameter Description for Four-Branch T- and Y-Splitters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P⃗=E⃗(ω)×H⃗*(ω).
Power(ω)=12sreal(P⃗).dS⃗.
T(ω)=12real(PyMonitor(ω)).dx12real(PxSource(ω)).dx.
Power Ratio=Monitored output power(Power(ω)=12sreal(P⃗).dS⃗)Incident field power

Metrics