Abstract

The idea of applying a simple Fabry–Perot fiber laser (FPFL) set-up in a free-running condition as an acoustic sensing medium is proposed. Conventional optical microphone requires a stringently aligned diaphragm to mediate the acoustic impedance mismatch between air and silica fiber. Motivated by the difficulty of optical sensing of airborne acoustic waves, a new sensing method is proposed to sense acoustic waves without the assistance of a diaphragm as transducer. By studying the output power fluctuation of the FPFL, the operating bandwidth and sensitivity of the proposed sensing method are determined. The tunability of the resonant frequency from 5 kHz to 85 kHz allows sensing of acoustic waves in the range of 100 Hz to 100 kHz. Tuning of the resonant frequency can be performed by changing the optical pumping power from as low as 10 mW to 68.5 mW or higher.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, Y. Hu, Z. Meng, and M. Ni, “Fiber-optic hydrophone using a cylindrical Helmholtz resonator as a mechanical anti-aliasing filter,” Opt. Lett. 33, 37–39 (2008).
    [CrossRef]
  2. T. Fu, Q. Li, Y. Liu, and J. Leng, “A novel embedded fiber optic acoustic emission sensor and its applications for monitoring failures of composite laminates,” in Smart Sensor Phenomena, Technology, Networks, and Systems 2009 (SPIE, 2009), 72931 A–72938.
  3. N. Bilaniuk, “Optical microphone transduction techniques,” Appl. Acoust. 50, 35–63 (1997).
    [CrossRef]
  4. J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62, 1136–1138 (1977).
    [CrossRef]
  5. L. Kruger and H. J. Theron, “Optical fibre Mach-Zehnder microphone,” in Microwave and Optoelectronics Conference 2007 (IMOC 2007) (SBMO/IEEE MTT-S International, 2007), 389–391.
  6. D. Wiesler, H. Wen, A. B. Tveten, B. Danver, and A. Dandridge, “Fiber optic ultrasound sensors for medical imaging applications,” in Optical Fiber Sensors, OSA Technical Digest Series, (Optical Society of America, 1997) .
  7. V. Kondakov, N. Meshcheryakov, and Y. Pod’yapol’skii, “A fiber-optics sensor for monitoring vibration in the bearings of large stationary plant,” Meas. Tech. 42, 897–901 (1999).
    [CrossRef]
  8. A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19, 1991–1993 (2007).
    [CrossRef]
  9. J. K. Holger, C. O. Paschereit, and I. Röhle, “A fiber-optical microphone based on a Fabry–Perot interferometer applied for thermo-acoustic measurements,” Meas. Sci. Technol. 21, 015302 (2010).
    [CrossRef]
  10. S. W. Løvseth, J. T. Kringlebotn, E. Rønnekleiv, and K. Bløtekjær, “Fiber distributed-feedback lasers used as acoustic sensors in air,” Appl. Opt. 38, 4821–4830 (1999).
    [CrossRef]
  11. T. Iida, K. Nakamura, and S. Ueha, “A microphone array using fiber Bragg gratings,” in Vol. 1 of Optical Fiber Sensors Conference (OFS 2002) Technical Digest (IEEE, 2002), 239–242.
  12. C. H. Pua, S. F. Norizan, S. W. Harun, and H. Ahmad, “Non-membrane optical microphone based on longitudinal modes competition,” Sens. Actuators A 168, 281–285 (2011).
    [CrossRef]
  13. A. E. Siegman, “Laser spiking and mode competition,” in Lasers (University Science Books, 1986).
  14. A. E. Siegman, “Laser Q-Switching,” in Lasers (University Science Books, 1986).

2011 (1)

C. H. Pua, S. F. Norizan, S. W. Harun, and H. Ahmad, “Non-membrane optical microphone based on longitudinal modes competition,” Sens. Actuators A 168, 281–285 (2011).
[CrossRef]

2010 (1)

J. K. Holger, C. O. Paschereit, and I. Röhle, “A fiber-optical microphone based on a Fabry–Perot interferometer applied for thermo-acoustic measurements,” Meas. Sci. Technol. 21, 015302 (2010).
[CrossRef]

2008 (1)

2007 (1)

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19, 1991–1993 (2007).
[CrossRef]

1999 (2)

V. Kondakov, N. Meshcheryakov, and Y. Pod’yapol’skii, “A fiber-optics sensor for monitoring vibration in the bearings of large stationary plant,” Meas. Tech. 42, 897–901 (1999).
[CrossRef]

S. W. Løvseth, J. T. Kringlebotn, E. Rønnekleiv, and K. Bløtekjær, “Fiber distributed-feedback lasers used as acoustic sensors in air,” Appl. Opt. 38, 4821–4830 (1999).
[CrossRef]

1997 (1)

N. Bilaniuk, “Optical microphone transduction techniques,” Appl. Acoust. 50, 35–63 (1997).
[CrossRef]

1977 (1)

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62, 1136–1138 (1977).
[CrossRef]

Ahmad, H.

C. H. Pua, S. F. Norizan, S. W. Harun, and H. Ahmad, “Non-membrane optical microphone based on longitudinal modes competition,” Sens. Actuators A 168, 281–285 (2011).
[CrossRef]

Bhuta, P. G.

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62, 1136–1138 (1977).
[CrossRef]

Bilaniuk, N.

N. Bilaniuk, “Optical microphone transduction techniques,” Appl. Acoust. 50, 35–63 (1997).
[CrossRef]

Bløtekjær, K.

Cole, J. H.

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62, 1136–1138 (1977).
[CrossRef]

Cusano, A.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19, 1991–1993 (2007).
[CrossRef]

D’Altrui, G.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19, 1991–1993 (2007).
[CrossRef]

Dandridge, A.

D. Wiesler, H. Wen, A. B. Tveten, B. Danver, and A. Dandridge, “Fiber optic ultrasound sensors for medical imaging applications,” in Optical Fiber Sensors, OSA Technical Digest Series, (Optical Society of America, 1997) .

Danver, B.

D. Wiesler, H. Wen, A. B. Tveten, B. Danver, and A. Dandridge, “Fiber optic ultrasound sensors for medical imaging applications,” in Optical Fiber Sensors, OSA Technical Digest Series, (Optical Society of America, 1997) .

Fu, T.

T. Fu, Q. Li, Y. Liu, and J. Leng, “A novel embedded fiber optic acoustic emission sensor and its applications for monitoring failures of composite laminates,” in Smart Sensor Phenomena, Technology, Networks, and Systems 2009 (SPIE, 2009), 72931 A–72938.

Giordano, M.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19, 1991–1993 (2007).
[CrossRef]

Harun, S. W.

C. H. Pua, S. F. Norizan, S. W. Harun, and H. Ahmad, “Non-membrane optical microphone based on longitudinal modes competition,” Sens. Actuators A 168, 281–285 (2011).
[CrossRef]

Holger, J. K.

J. K. Holger, C. O. Paschereit, and I. Röhle, “A fiber-optical microphone based on a Fabry–Perot interferometer applied for thermo-acoustic measurements,” Meas. Sci. Technol. 21, 015302 (2010).
[CrossRef]

Hu, Y.

Iida, T.

T. Iida, K. Nakamura, and S. Ueha, “A microphone array using fiber Bragg gratings,” in Vol. 1 of Optical Fiber Sensors Conference (OFS 2002) Technical Digest (IEEE, 2002), 239–242.

Johnson, R. L.

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62, 1136–1138 (1977).
[CrossRef]

Kondakov, V.

V. Kondakov, N. Meshcheryakov, and Y. Pod’yapol’skii, “A fiber-optics sensor for monitoring vibration in the bearings of large stationary plant,” Meas. Tech. 42, 897–901 (1999).
[CrossRef]

Kringlebotn, J. T.

Kruger, L.

L. Kruger and H. J. Theron, “Optical fibre Mach-Zehnder microphone,” in Microwave and Optoelectronics Conference 2007 (IMOC 2007) (SBMO/IEEE MTT-S International, 2007), 389–391.

Laudati, A.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19, 1991–1993 (2007).
[CrossRef]

Leng, J.

T. Fu, Q. Li, Y. Liu, and J. Leng, “A novel embedded fiber optic acoustic emission sensor and its applications for monitoring failures of composite laminates,” in Smart Sensor Phenomena, Technology, Networks, and Systems 2009 (SPIE, 2009), 72931 A–72938.

Li, Q.

T. Fu, Q. Li, Y. Liu, and J. Leng, “A novel embedded fiber optic acoustic emission sensor and its applications for monitoring failures of composite laminates,” in Smart Sensor Phenomena, Technology, Networks, and Systems 2009 (SPIE, 2009), 72931 A–72938.

Liu, Y.

T. Fu, Q. Li, Y. Liu, and J. Leng, “A novel embedded fiber optic acoustic emission sensor and its applications for monitoring failures of composite laminates,” in Smart Sensor Phenomena, Technology, Networks, and Systems 2009 (SPIE, 2009), 72931 A–72938.

Løvseth, S. W.

Meng, Z.

Mennella, F.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19, 1991–1993 (2007).
[CrossRef]

Meshcheryakov, N.

V. Kondakov, N. Meshcheryakov, and Y. Pod’yapol’skii, “A fiber-optics sensor for monitoring vibration in the bearings of large stationary plant,” Meas. Tech. 42, 897–901 (1999).
[CrossRef]

Nakamura, K.

T. Iida, K. Nakamura, and S. Ueha, “A microphone array using fiber Bragg gratings,” in Vol. 1 of Optical Fiber Sensors Conference (OFS 2002) Technical Digest (IEEE, 2002), 239–242.

Ni, M.

Norizan, S. F.

C. H. Pua, S. F. Norizan, S. W. Harun, and H. Ahmad, “Non-membrane optical microphone based on longitudinal modes competition,” Sens. Actuators A 168, 281–285 (2011).
[CrossRef]

Paschereit, C. O.

J. K. Holger, C. O. Paschereit, and I. Röhle, “A fiber-optical microphone based on a Fabry–Perot interferometer applied for thermo-acoustic measurements,” Meas. Sci. Technol. 21, 015302 (2010).
[CrossRef]

Pod’yapol’skii, Y.

V. Kondakov, N. Meshcheryakov, and Y. Pod’yapol’skii, “A fiber-optics sensor for monitoring vibration in the bearings of large stationary plant,” Meas. Tech. 42, 897–901 (1999).
[CrossRef]

Pua, C. H.

C. H. Pua, S. F. Norizan, S. W. Harun, and H. Ahmad, “Non-membrane optical microphone based on longitudinal modes competition,” Sens. Actuators A 168, 281–285 (2011).
[CrossRef]

Röhle, I.

J. K. Holger, C. O. Paschereit, and I. Röhle, “A fiber-optical microphone based on a Fabry–Perot interferometer applied for thermo-acoustic measurements,” Meas. Sci. Technol. 21, 015302 (2010).
[CrossRef]

Rønnekleiv, E.

Siegman, A. E.

A. E. Siegman, “Laser Q-Switching,” in Lasers (University Science Books, 1986).

A. E. Siegman, “Laser spiking and mode competition,” in Lasers (University Science Books, 1986).

Tassini, C. C.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19, 1991–1993 (2007).
[CrossRef]

Theron, H. J.

L. Kruger and H. J. Theron, “Optical fibre Mach-Zehnder microphone,” in Microwave and Optoelectronics Conference 2007 (IMOC 2007) (SBMO/IEEE MTT-S International, 2007), 389–391.

Tveten, A. B.

D. Wiesler, H. Wen, A. B. Tveten, B. Danver, and A. Dandridge, “Fiber optic ultrasound sensors for medical imaging applications,” in Optical Fiber Sensors, OSA Technical Digest Series, (Optical Society of America, 1997) .

Ueha, S.

T. Iida, K. Nakamura, and S. Ueha, “A microphone array using fiber Bragg gratings,” in Vol. 1 of Optical Fiber Sensors Conference (OFS 2002) Technical Digest (IEEE, 2002), 239–242.

Wang, Z.

Wen, H.

D. Wiesler, H. Wen, A. B. Tveten, B. Danver, and A. Dandridge, “Fiber optic ultrasound sensors for medical imaging applications,” in Optical Fiber Sensors, OSA Technical Digest Series, (Optical Society of America, 1997) .

Wiesler, D.

D. Wiesler, H. Wen, A. B. Tveten, B. Danver, and A. Dandridge, “Fiber optic ultrasound sensors for medical imaging applications,” in Optical Fiber Sensors, OSA Technical Digest Series, (Optical Society of America, 1997) .

Appl. Acoust. (1)

N. Bilaniuk, “Optical microphone transduction techniques,” Appl. Acoust. 50, 35–63 (1997).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19, 1991–1993 (2007).
[CrossRef]

J. Acoust. Soc. Am. (1)

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62, 1136–1138 (1977).
[CrossRef]

Meas. Sci. Technol. (1)

J. K. Holger, C. O. Paschereit, and I. Röhle, “A fiber-optical microphone based on a Fabry–Perot interferometer applied for thermo-acoustic measurements,” Meas. Sci. Technol. 21, 015302 (2010).
[CrossRef]

Meas. Tech. (1)

V. Kondakov, N. Meshcheryakov, and Y. Pod’yapol’skii, “A fiber-optics sensor for monitoring vibration in the bearings of large stationary plant,” Meas. Tech. 42, 897–901 (1999).
[CrossRef]

Opt. Lett. (1)

Sens. Actuators A (1)

C. H. Pua, S. F. Norizan, S. W. Harun, and H. Ahmad, “Non-membrane optical microphone based on longitudinal modes competition,” Sens. Actuators A 168, 281–285 (2011).
[CrossRef]

Other (6)

A. E. Siegman, “Laser spiking and mode competition,” in Lasers (University Science Books, 1986).

A. E. Siegman, “Laser Q-Switching,” in Lasers (University Science Books, 1986).

T. Fu, Q. Li, Y. Liu, and J. Leng, “A novel embedded fiber optic acoustic emission sensor and its applications for monitoring failures of composite laminates,” in Smart Sensor Phenomena, Technology, Networks, and Systems 2009 (SPIE, 2009), 72931 A–72938.

T. Iida, K. Nakamura, and S. Ueha, “A microphone array using fiber Bragg gratings,” in Vol. 1 of Optical Fiber Sensors Conference (OFS 2002) Technical Digest (IEEE, 2002), 239–242.

L. Kruger and H. J. Theron, “Optical fibre Mach-Zehnder microphone,” in Microwave and Optoelectronics Conference 2007 (IMOC 2007) (SBMO/IEEE MTT-S International, 2007), 389–391.

D. Wiesler, H. Wen, A. B. Tveten, B. Danver, and A. Dandridge, “Fiber optic ultrasound sensors for medical imaging applications,” in Optical Fiber Sensors, OSA Technical Digest Series, (Optical Society of America, 1997) .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup of linear cavity fiber laser.

Fig. 2.
Fig. 2.

Er-doped fiber gain section pumped by 980 nm laser diode module with the fiber spool.

Fig. 3.
Fig. 3.

Optical output noise from (a) electrical oscilloscope and (b) frequency spectrum analysis using FFT method.

Fig. 4.
Fig. 4.

Optical output of FPFL after the vibration impact.

Fig. 5.
Fig. 5.

Inset of Modulated optical output at 15 kHz, 25 kHz, and 40 kHz with respect to the average resonant frequency, with 17.5 mW pump power.

Fig. 6.
Fig. 6.

Acoustic excitation arrangement diagram.

Fig. 7.
Fig. 7.

Averaged resonant frequency distribution count (line) together with the average peak to peak (P-P) optical output (dots) from the modulated optical power at different frequencies.

Fig. 8.
Fig. 8.

Optical output under modulation of (a) 3 kHz and (b) 50 kHz acoustic waves, viewed on a digital oscilloscope.

Fig. 9.
Fig. 9.

(a) Averaged resonant frequency spectrum distribution of output power at different pump power, and (b) Resonant frequency at different pump power for 10 m SMF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λp=2Loptpmode
Δv=c2nL,

Metrics