Abstract

Because the dark current and the noise of quantum dot infrared photodetectors (QDIPs) can bring about a degradation in their performance, they have attracted more and more attention in recent years. In this paper, an algorithm used to evaluate the dark current of the QDIP is proposed, which is based on the algorithm including the common contribution of the microscale and the nanoscale electron transport. Namely, by accounting for the dependence of the drift velocity on the applied electric field, we greatly enhance the accuracy of the dark current calculation compared with that in the previous algorithm. This proposed algorithm is further used to estimate the noise current of QDIP, and the calculated results show a good agreement with the published data.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17, 23160–23168 (2009).
    [CrossRef]
  2. H. D. Jahromi, M. H. Sheikhi, and M. H. Yousefi, “Investigation of the quantum dot infrared photodetectors dark current,” Opt. Laser Technol. 43, 1020–1025 (2011).
    [CrossRef]
  3. P. Martyniuk and A. Rogalski, “Quantum-dot infrared photodetectors: status and outlook,” Prog. Quantum Electron. 32, 89–120 (2008).
    [CrossRef]
  4. V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristic,” Semicond. Sci. Technol. 16, 331–338 (2001).
    [CrossRef]
  5. T. Asano, A. Madhukar, K. Mahalingam, and G. J. Brown, “Dark current and band profiles in low defect density thick multilayered GaAs/InAs self-assembled quantum dot structures for infrared detectors,” J. Appl. Phys. 104, 113115(2008).
    [CrossRef]
  6. S. Lin, Y. J. Tsai, and S. C. Lee, “Transport characteristics of InAs/GaAs quantum-dots infrared photodetectors,” Appl. Phys. Lett. 83, 752–754 (2003).
    [CrossRef]
  7. Z. Ye, J. C. Campell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity,” IEEE J. Quantum Electron. 38, 1234–1237 (2002).
    [CrossRef]
  8. J. Phillips, K. Kamath, and P. Bhattacharya, “Far-infrared photoconductivity in self-organized InAs quantum dots,” Appl. Phys. Lett. 72, 2020–2022 (1998).
    [CrossRef]
  9. A. D. Stiff-Robert, “Contribution of field-assisted tunneling emission to dark current in InAsGaAs quantum dot infrared photodetectors,” IEEE Photon. Technol. Lett. 16, 867–869 (2004).
    [CrossRef]
  10. H. C. Liu, “Quantum dot infrared photodetector,” Opto-Electron. Rev. 11, 1–5 (2003).
  11. H. C. Liu, “Quantum well infrared photodetector physics and novel devices,” Semicond. Semimet. 62, 126–196 (2002).
    [CrossRef]
  12. H. Liu and J. Zhang, “Physical model for the dark current of quantum dot infrared photodetectors,” Opt. Laser Technol. 44, 1536–1542 (2012).
    [CrossRef]
  13. X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. Unil Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
    [CrossRef]
  14. H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
    [CrossRef]
  15. L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010).
    [CrossRef]
  16. P. Martyniuk and A. Rogalski, “Insight into performance of quantum dot infrared photodetectors,” Bull. Pol. Acad. Sci.: Tech. Sci. 57, 103–116 (2009).
    [CrossRef]
  17. I. I. Mahmoud, H. S. Konber, and M. S. El Tokhy, “Performance improvement of quantum dot infrared photodetectors through modeling,” Opt. Laser Technol. 42, 1240–1249 (2010).
    [CrossRef]
  18. G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91, 1331–1338 (2002).
    [CrossRef]
  19. X. Lu and J. Vaillancourt, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
    [CrossRef]
  20. Z. Y. Zhao, C. Yi, K. R. Lantz, and A. D. Stiff-Roberts, “Effect of donor-complex-defect-induced dipole field on InAs/GaAs quantum dot infrared photodetector activation energy,” Appl. Phys. Lett. 90, 233511 (2007).
    [CrossRef]

2012

H. Liu and J. Zhang, “Physical model for the dark current of quantum dot infrared photodetectors,” Opt. Laser Technol. 44, 1536–1542 (2012).
[CrossRef]

2011

H. D. Jahromi, M. H. Sheikhi, and M. H. Yousefi, “Investigation of the quantum dot infrared photodetectors dark current,” Opt. Laser Technol. 43, 1020–1025 (2011).
[CrossRef]

2010

L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010).
[CrossRef]

I. I. Mahmoud, H. S. Konber, and M. S. El Tokhy, “Performance improvement of quantum dot infrared photodetectors through modeling,” Opt. Laser Technol. 42, 1240–1249 (2010).
[CrossRef]

2009

P. Martyniuk and A. Rogalski, “Insight into performance of quantum dot infrared photodetectors,” Bull. Pol. Acad. Sci.: Tech. Sci. 57, 103–116 (2009).
[CrossRef]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17, 23160–23168 (2009).
[CrossRef]

2008

P. Martyniuk and A. Rogalski, “Quantum-dot infrared photodetectors: status and outlook,” Prog. Quantum Electron. 32, 89–120 (2008).
[CrossRef]

T. Asano, A. Madhukar, K. Mahalingam, and G. J. Brown, “Dark current and band profiles in low defect density thick multilayered GaAs/InAs self-assembled quantum dot structures for infrared detectors,” J. Appl. Phys. 104, 113115(2008).
[CrossRef]

2007

X. Lu and J. Vaillancourt, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
[CrossRef]

Z. Y. Zhao, C. Yi, K. R. Lantz, and A. D. Stiff-Roberts, “Effect of donor-complex-defect-induced dipole field on InAs/GaAs quantum dot infrared photodetector activation energy,” Appl. Phys. Lett. 90, 233511 (2007).
[CrossRef]

2006

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

2005

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. Unil Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

2004

A. D. Stiff-Robert, “Contribution of field-assisted tunneling emission to dark current in InAsGaAs quantum dot infrared photodetectors,” IEEE Photon. Technol. Lett. 16, 867–869 (2004).
[CrossRef]

2003

H. C. Liu, “Quantum dot infrared photodetector,” Opto-Electron. Rev. 11, 1–5 (2003).

S. Lin, Y. J. Tsai, and S. C. Lee, “Transport characteristics of InAs/GaAs quantum-dots infrared photodetectors,” Appl. Phys. Lett. 83, 752–754 (2003).
[CrossRef]

2002

Z. Ye, J. C. Campell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity,” IEEE J. Quantum Electron. 38, 1234–1237 (2002).
[CrossRef]

H. C. Liu, “Quantum well infrared photodetector physics and novel devices,” Semicond. Semimet. 62, 126–196 (2002).
[CrossRef]

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91, 1331–1338 (2002).
[CrossRef]

2001

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristic,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

1998

J. Phillips, K. Kamath, and P. Bhattacharya, “Far-infrared photoconductivity in self-organized InAs quantum dots,” Appl. Phys. Lett. 72, 2020–2022 (1998).
[CrossRef]

Abedin, N.

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91, 1331–1338 (2002).
[CrossRef]

Ariyawansa, G.

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. Unil Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Asano, T.

T. Asano, A. Madhukar, K. Mahalingam, and G. J. Brown, “Dark current and band profiles in low defect density thick multilayered GaAs/InAs self-assembled quantum dot structures for infrared detectors,” J. Appl. Phys. 104, 113115(2008).
[CrossRef]

Bhattacharya, P.

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. Unil Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

J. Phillips, K. Kamath, and P. Bhattacharya, “Far-infrared photoconductivity in self-organized InAs quantum dots,” Appl. Phys. Lett. 72, 2020–2022 (1998).
[CrossRef]

Brown, G. J.

T. Asano, A. Madhukar, K. Mahalingam, and G. J. Brown, “Dark current and band profiles in low defect density thick multilayered GaAs/InAs self-assembled quantum dot structures for infrared detectors,” J. Appl. Phys. 104, 113115(2008).
[CrossRef]

Brueck, S. R. J.

Campell, J. C.

Z. Ye, J. C. Campell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity,” IEEE J. Quantum Electron. 38, 1234–1237 (2002).
[CrossRef]

Chakrabarti, S.

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. Unil Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Chen, Z.

Z. Ye, J. C. Campell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity,” IEEE J. Quantum Electron. 38, 1234–1237 (2002).
[CrossRef]

El Tokhy, M. S.

I. I. Mahmoud, H. S. Konber, and M. S. El Tokhy, “Performance improvement of quantum dot infrared photodetectors through modeling,” Opt. Laser Technol. 42, 1240–1249 (2010).
[CrossRef]

Jahromi, H. D.

H. D. Jahromi, M. H. Sheikhi, and M. H. Yousefi, “Investigation of the quantum dot infrared photodetectors dark current,” Opt. Laser Technol. 43, 1020–1025 (2011).
[CrossRef]

Joshi, R. P.

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91, 1331–1338 (2002).
[CrossRef]

Kamath, K.

J. Phillips, K. Kamath, and P. Bhattacharya, “Far-infrared photoconductivity in self-organized InAs quantum dots,” Appl. Phys. Lett. 72, 2020–2022 (1998).
[CrossRef]

Khmyrova, I.

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristic,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Kim, E.-T.

Z. Ye, J. C. Campell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity,” IEEE J. Quantum Electron. 38, 1234–1237 (2002).
[CrossRef]

Konber, H. S.

I. I. Mahmoud, H. S. Konber, and M. S. El Tokhy, “Performance improvement of quantum dot infrared photodetectors through modeling,” Opt. Laser Technol. 42, 1240–1249 (2010).
[CrossRef]

Krishna, S.

Lantz, K. R.

Z. Y. Zhao, C. Yi, K. R. Lantz, and A. D. Stiff-Roberts, “Effect of donor-complex-defect-induced dipole field on InAs/GaAs quantum dot infrared photodetector activation energy,” Appl. Phys. Lett. 90, 233511 (2007).
[CrossRef]

Lee, S. C.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17, 23160–23168 (2009).
[CrossRef]

S. Lin, Y. J. Tsai, and S. C. Lee, “Transport characteristics of InAs/GaAs quantum-dots infrared photodetectors,” Appl. Phys. Lett. 83, 752–754 (2003).
[CrossRef]

Li, N.

L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010).
[CrossRef]

Lim, H.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Lin, L.

L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010).
[CrossRef]

Lin, S.

S. Lin, Y. J. Tsai, and S. C. Lee, “Transport characteristics of InAs/GaAs quantum-dots infrared photodetectors,” Appl. Phys. Lett. 83, 752–754 (2003).
[CrossRef]

Liu, F. Q.

L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010).
[CrossRef]

Liu, H.

H. Liu and J. Zhang, “Physical model for the dark current of quantum dot infrared photodetectors,” Opt. Laser Technol. 44, 1536–1542 (2012).
[CrossRef]

Liu, H. C.

H. C. Liu, “Quantum dot infrared photodetector,” Opto-Electron. Rev. 11, 1–5 (2003).

H. C. Liu, “Quantum well infrared photodetector physics and novel devices,” Semicond. Semimet. 62, 126–196 (2002).
[CrossRef]

Lu, W.

L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010).
[CrossRef]

Lu, X.

X. Lu and J. Vaillancourt, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
[CrossRef]

Madhukar, A.

T. Asano, A. Madhukar, K. Mahalingam, and G. J. Brown, “Dark current and band profiles in low defect density thick multilayered GaAs/InAs self-assembled quantum dot structures for infrared detectors,” J. Appl. Phys. 104, 113115(2008).
[CrossRef]

Z. Ye, J. C. Campell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity,” IEEE J. Quantum Electron. 38, 1234–1237 (2002).
[CrossRef]

Mahalingam, K.

T. Asano, A. Madhukar, K. Mahalingam, and G. J. Brown, “Dark current and band profiles in low defect density thick multilayered GaAs/InAs self-assembled quantum dot structures for infrared detectors,” J. Appl. Phys. 104, 113115(2008).
[CrossRef]

Mahmoud, I. I.

I. I. Mahmoud, H. S. Konber, and M. S. El Tokhy, “Performance improvement of quantum dot infrared photodetectors through modeling,” Opt. Laser Technol. 42, 1240–1249 (2010).
[CrossRef]

Martyniuk, P.

P. Martyniuk and A. Rogalski, “Insight into performance of quantum dot infrared photodetectors,” Bull. Pol. Acad. Sci.: Tech. Sci. 57, 103–116 (2009).
[CrossRef]

P. Martyniuk and A. Rogalski, “Quantum-dot infrared photodetectors: status and outlook,” Prog. Quantum Electron. 32, 89–120 (2008).
[CrossRef]

Mitin, V.

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristic,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Movaghar, B.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Phillips, J.

J. Phillips, K. Kamath, and P. Bhattacharya, “Far-infrared photoconductivity in self-organized InAs quantum dots,” Appl. Phys. Lett. 72, 2020–2022 (1998).
[CrossRef]

Pipa, V.

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristic,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Quivy, A. A.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Razeghi, M.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Rogalski, A.

P. Martyniuk and A. Rogalski, “Insight into performance of quantum dot infrared photodetectors,” Bull. Pol. Acad. Sci.: Tech. Sci. 57, 103–116 (2009).
[CrossRef]

P. Martyniuk and A. Rogalski, “Quantum-dot infrared photodetectors: status and outlook,” Prog. Quantum Electron. 32, 89–120 (2008).
[CrossRef]

Ryzhii, V.

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristic,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Satyanadh, G.

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91, 1331–1338 (2002).
[CrossRef]

Sheikhi, M. H.

H. D. Jahromi, M. H. Sheikhi, and M. H. Yousefi, “Investigation of the quantum dot infrared photodetectors dark current,” Opt. Laser Technol. 43, 1020–1025 (2011).
[CrossRef]

Singh, U.

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91, 1331–1338 (2002).
[CrossRef]

Stiff-Robert, A. D.

A. D. Stiff-Robert, “Contribution of field-assisted tunneling emission to dark current in InAsGaAs quantum dot infrared photodetectors,” IEEE Photon. Technol. Lett. 16, 867–869 (2004).
[CrossRef]

Stiff-Roberts, A. D.

Z. Y. Zhao, C. Yi, K. R. Lantz, and A. D. Stiff-Roberts, “Effect of donor-complex-defect-induced dipole field on InAs/GaAs quantum dot infrared photodetector activation energy,” Appl. Phys. Lett. 90, 233511 (2007).
[CrossRef]

Su, X.

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. Unil Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Taguchi, M.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Tsai, Y. J.

S. Lin, Y. J. Tsai, and S. C. Lee, “Transport characteristics of InAs/GaAs quantum-dots infrared photodetectors,” Appl. Phys. Lett. 83, 752–754 (2003).
[CrossRef]

Tsao, S.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Unil Perera, A. G.

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. Unil Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Vaillancourt, J.

X. Lu and J. Vaillancourt, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
[CrossRef]

Weng, Q. C.

L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010).
[CrossRef]

Willander, M.

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristic,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Xiong, D. Y.

L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010).
[CrossRef]

Ye, Z.

Z. Ye, J. C. Campell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity,” IEEE J. Quantum Electron. 38, 1234–1237 (2002).
[CrossRef]

Yi, C.

Z. Y. Zhao, C. Yi, K. R. Lantz, and A. D. Stiff-Roberts, “Effect of donor-complex-defect-induced dipole field on InAs/GaAs quantum dot infrared photodetector activation energy,” Appl. Phys. Lett. 90, 233511 (2007).
[CrossRef]

Yousefi, M. H.

H. D. Jahromi, M. H. Sheikhi, and M. H. Yousefi, “Investigation of the quantum dot infrared photodetectors dark current,” Opt. Laser Technol. 43, 1020–1025 (2011).
[CrossRef]

Zhang, J.

H. Liu and J. Zhang, “Physical model for the dark current of quantum dot infrared photodetectors,” Opt. Laser Technol. 44, 1536–1542 (2012).
[CrossRef]

Zhang, W.

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Zhao, Z. Y.

Z. Y. Zhao, C. Yi, K. R. Lantz, and A. D. Stiff-Roberts, “Effect of donor-complex-defect-induced dipole field on InAs/GaAs quantum dot infrared photodetector activation energy,” Appl. Phys. Lett. 90, 233511 (2007).
[CrossRef]

Zhen, H. L.

L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010).
[CrossRef]

Appl. Phys. Lett.

J. Phillips, K. Kamath, and P. Bhattacharya, “Far-infrared photoconductivity in self-organized InAs quantum dots,” Appl. Phys. Lett. 72, 2020–2022 (1998).
[CrossRef]

S. Lin, Y. J. Tsai, and S. C. Lee, “Transport characteristics of InAs/GaAs quantum-dots infrared photodetectors,” Appl. Phys. Lett. 83, 752–754 (2003).
[CrossRef]

L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010).
[CrossRef]

X. Lu and J. Vaillancourt, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
[CrossRef]

Z. Y. Zhao, C. Yi, K. R. Lantz, and A. D. Stiff-Roberts, “Effect of donor-complex-defect-induced dipole field on InAs/GaAs quantum dot infrared photodetector activation energy,” Appl. Phys. Lett. 90, 233511 (2007).
[CrossRef]

Bull. Pol. Acad. Sci.: Tech. Sci.

P. Martyniuk and A. Rogalski, “Insight into performance of quantum dot infrared photodetectors,” Bull. Pol. Acad. Sci.: Tech. Sci. 57, 103–116 (2009).
[CrossRef]

IEEE J. Quantum Electron.

X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. Unil Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005).
[CrossRef]

Z. Ye, J. C. Campell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity,” IEEE J. Quantum Electron. 38, 1234–1237 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

A. D. Stiff-Robert, “Contribution of field-assisted tunneling emission to dark current in InAsGaAs quantum dot infrared photodetectors,” IEEE Photon. Technol. Lett. 16, 867–869 (2004).
[CrossRef]

J. Appl. Phys.

T. Asano, A. Madhukar, K. Mahalingam, and G. J. Brown, “Dark current and band profiles in low defect density thick multilayered GaAs/InAs self-assembled quantum dot structures for infrared detectors,” J. Appl. Phys. 104, 113115(2008).
[CrossRef]

G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91, 1331–1338 (2002).
[CrossRef]

Opt. Express

Opt. Laser Technol.

H. D. Jahromi, M. H. Sheikhi, and M. H. Yousefi, “Investigation of the quantum dot infrared photodetectors dark current,” Opt. Laser Technol. 43, 1020–1025 (2011).
[CrossRef]

H. Liu and J. Zhang, “Physical model for the dark current of quantum dot infrared photodetectors,” Opt. Laser Technol. 44, 1536–1542 (2012).
[CrossRef]

I. I. Mahmoud, H. S. Konber, and M. S. El Tokhy, “Performance improvement of quantum dot infrared photodetectors through modeling,” Opt. Laser Technol. 42, 1240–1249 (2010).
[CrossRef]

Opto-Electron. Rev.

H. C. Liu, “Quantum dot infrared photodetector,” Opto-Electron. Rev. 11, 1–5 (2003).

Phys. Rev. B

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006).
[CrossRef]

Prog. Quantum Electron.

P. Martyniuk and A. Rogalski, “Quantum-dot infrared photodetectors: status and outlook,” Prog. Quantum Electron. 32, 89–120 (2008).
[CrossRef]

Semicond. Sci. Technol.

V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristic,” Semicond. Sci. Technol. 16, 331–338 (2001).
[CrossRef]

Semicond. Semimet.

H. C. Liu, “Quantum well infrared photodetector physics and novel devices,” Semicond. Semimet. 62, 126–196 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Dark current of the QDIP at 90 K and 130 K.

Fig. 2.
Fig. 2.

Noise current of the QDIP at 90 K and 130 K.

Fig. 3.
Fig. 3.

Noise current as a function of applied electric field and dark current.

Tables (1)

Tables Icon

Table 1. Parameters from QDIP Devices

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

jdark=2ev(mkT2π2)3/2exp(EakT),
Ea=E0,microexp(E/E0)+E0,nanoβE,
jdark=2ev(mkT2π2)3/2exp(E0,microexp(E/E0)+E0,nanoβEkT).
v=μE(1+(μEvs)2)12,
jdark=2eμE(1+(μEvs)2)12(mkT2π2)3/2exp(E0,microexp(E/E0)+E0,nanoβEkT).
in=4egnId,
τtrans=hQDμE[1+(μE/vs)2]1/2.
gn=τlifeKτtrans,
τlife=(K+1)LπaQD2hQDQDVt,
gn=(K+1)LμE[1+(μE/vs)2]1/2KπaQD2hQD2QDVt.
in=8(K+1)e2μ2E2LA(1+(μEvs)2)1(mkT2π2)3/2exp(E0,microexp(E/E0)+E0,nanoβEkT)KπaQD2hQD2QDVt.

Metrics