Abstract

An axisymmetric mathematical model was established for millisecond-pulsed Nd:YAG laser heating of silicon-based positive-intrinsic-negative photodiode. The transient temperature fields were obtained by using the finite element method. The temperature dependences of the material parameters and the absorption coefficient were taken into account in the calculation. The results indicate that the optical absorption coefficient and the thermal conductivity are the two key factors for the temperature evolution. The diffusion of boron in the liquid phase and the introduction of deep-level defects in the depletion region of the photodiode were the two reasons for the millisecond laser-induced electrical degradation of the photodiode. The morphological damage threshold and electrical degradation threshold of the photodiode were obtained numerically. Meanwhile, the influence of the antireflection coating, the doping concentration, and the junction depth were also considered. The results show that the morphological damage threshold decreases with adding an antireflection coating, the increase of the doping concentration, and junction depth. The electrical degradation threshold increases only with the junction depth.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Trana, H. Y. Zheng, Y. C. Lam, V. M. Murukeshan, J. C. Chai, and D. E. Hardt, “Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses,” Opt. Lasers Eng. 43, 977–986 (2005).
    [CrossRef]
  2. T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92, 013104 (2008).
    [CrossRef]
  3. X. Wang, D. H. Zhu, Z. H. Shen, J. Lu, and X. W. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation” Appl. Surf. Sci. 257, 1583–1588(2010).
    [CrossRef]
  4. X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103 (2010).
    [CrossRef]
  5. S. E. Watkins, C.-Z. Zhang, R. M. Walser, and M. F. Becker, “Electrical performance of laser damaged silicon photodiodes,” Appl. Opt. 29, 827–834 (1990).
    [CrossRef]
  6. J. P. Moeglin, B. Gautier, R. Joeckle, and D. Bolmont, “Electrical behaviour of laser damaged Si-photodiodes,” Opt. Lasers Eng. 28, 317–330 (1997).
    [CrossRef]
  7. V. K. Arora and A. L. Dawar, “Laser-induced damage studies in silicon and silicon-based photo detectors,” Appl. Opt. 35, 7061–7065 (1996).
    [CrossRef]
  8. F. M. Li, O. Nixon, and A. Nathan, “Degradation behavior and damage mechanisms of CCD image sensor with deep-UV laser radiation,” IEEE Trans. Electron Devices 51, 2229–2236 (2004).
    [CrossRef]
  9. P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
    [CrossRef]
  10. S. Hermann, N. Harder, R. Brendel, D. Herzog, and H. Haferkamp, “Picosecond laser ablation of SiO2 layers on silicon substrates,” Appl. Phys. A 99, 151–158 (2010).
    [CrossRef]
  11. B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Finite element model of laser-generated surface acoustic waves in coating—substrate system,” J. Appl. Phys. 95, 2109–2116 (2004).
    [CrossRef]
  12. P. J. Chernek and J. A. Orson, “Simple thermal response model for a p-doped silicon substrate irradiated by 1.06- and 1.32-δµm lasers,” Proc. SPIE 4679, 186–197 (2002).
    [CrossRef]
  13. R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp.-High Pressures 35, 505–511(2003).
    [CrossRef]
  14. K. Yamaguchi and K. Itagaki, “Measurement of high temperature heat content of silicon by drop calorimetry,” J. Therm. Anal. Calorim. 69, 1059–1066 (2002).
    [CrossRef]
  15. C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. 134, A1058 (1964).
    [CrossRef]
  16. H. Kobatake, H. Fukuyama, and I. Minato, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
    [CrossRef]
  17. R. F. Wood, C. W. White, and R. T. Young, Semiconductors and Semimetals (Academic, 1984), Vol. 23.
  18. J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type,” Proc. Cambridge Philos. Soc. 43, 50–67 (1947).
    [CrossRef]
  19. J. P. Moeglin, B. Gautier, R. C. Joeckle, and D. Bolmont, “Photoelectric performance degradation of several laser-irradiated Si detectors,” Proc. SPIE 3287, 60–66 (1998).
    [CrossRef]
  20. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  21. P. E. Schmid, “Optical absorption in heavily doped silicon,” Phys. Rev. B 23, 5531–5536 (1981).
    [CrossRef]

2010 (3)

X. Wang, D. H. Zhu, Z. H. Shen, J. Lu, and X. W. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation” Appl. Surf. Sci. 257, 1583–1588(2010).
[CrossRef]

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103 (2010).
[CrossRef]

S. Hermann, N. Harder, R. Brendel, D. Herzog, and H. Haferkamp, “Picosecond laser ablation of SiO2 layers on silicon substrates,” Appl. Phys. A 99, 151–158 (2010).
[CrossRef]

2008 (1)

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92, 013104 (2008).
[CrossRef]

2007 (2)

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

H. Kobatake, H. Fukuyama, and I. Minato, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

2005 (1)

D. V. Trana, H. Y. Zheng, Y. C. Lam, V. M. Murukeshan, J. C. Chai, and D. E. Hardt, “Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses,” Opt. Lasers Eng. 43, 977–986 (2005).
[CrossRef]

2004 (2)

F. M. Li, O. Nixon, and A. Nathan, “Degradation behavior and damage mechanisms of CCD image sensor with deep-UV laser radiation,” IEEE Trans. Electron Devices 51, 2229–2236 (2004).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Finite element model of laser-generated surface acoustic waves in coating—substrate system,” J. Appl. Phys. 95, 2109–2116 (2004).
[CrossRef]

2003 (1)

R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp.-High Pressures 35, 505–511(2003).
[CrossRef]

2002 (2)

K. Yamaguchi and K. Itagaki, “Measurement of high temperature heat content of silicon by drop calorimetry,” J. Therm. Anal. Calorim. 69, 1059–1066 (2002).
[CrossRef]

P. J. Chernek and J. A. Orson, “Simple thermal response model for a p-doped silicon substrate irradiated by 1.06- and 1.32-δµm lasers,” Proc. SPIE 4679, 186–197 (2002).
[CrossRef]

1998 (1)

J. P. Moeglin, B. Gautier, R. C. Joeckle, and D. Bolmont, “Photoelectric performance degradation of several laser-irradiated Si detectors,” Proc. SPIE 3287, 60–66 (1998).
[CrossRef]

1997 (1)

J. P. Moeglin, B. Gautier, R. Joeckle, and D. Bolmont, “Electrical behaviour of laser damaged Si-photodiodes,” Opt. Lasers Eng. 28, 317–330 (1997).
[CrossRef]

1996 (1)

1990 (1)

1981 (1)

P. E. Schmid, “Optical absorption in heavily doped silicon,” Phys. Rev. B 23, 5531–5536 (1981).
[CrossRef]

1964 (1)

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. 134, A1058 (1964).
[CrossRef]

1947 (1)

J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type,” Proc. Cambridge Philos. Soc. 43, 50–67 (1947).
[CrossRef]

Arora, V. K.

Becker, M. F.

Bolmont, D.

J. P. Moeglin, B. Gautier, R. C. Joeckle, and D. Bolmont, “Photoelectric performance degradation of several laser-irradiated Si detectors,” Proc. SPIE 3287, 60–66 (1998).
[CrossRef]

J. P. Moeglin, B. Gautier, R. Joeckle, and D. Bolmont, “Electrical behaviour of laser damaged Si-photodiodes,” Opt. Lasers Eng. 28, 317–330 (1997).
[CrossRef]

Brendel, R.

S. Hermann, N. Harder, R. Brendel, D. Herzog, and H. Haferkamp, “Picosecond laser ablation of SiO2 layers on silicon substrates,” Appl. Phys. A 99, 151–158 (2010).
[CrossRef]

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Chai, J. C.

D. V. Trana, H. Y. Zheng, Y. C. Lam, V. M. Murukeshan, J. C. Chai, and D. E. Hardt, “Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses,” Opt. Lasers Eng. 43, 977–986 (2005).
[CrossRef]

Chernek, P. J.

P. J. Chernek and J. A. Orson, “Simple thermal response model for a p-doped silicon substrate irradiated by 1.06- and 1.32-δµm lasers,” Proc. SPIE 4679, 186–197 (2002).
[CrossRef]

Crank, J.

J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type,” Proc. Cambridge Philos. Soc. 43, 50–67 (1947).
[CrossRef]

Dawar, A. L.

Endo, R. K.

R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp.-High Pressures 35, 505–511(2003).
[CrossRef]

Engelhart, P.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Fujihara, Y.

R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp.-High Pressures 35, 505–511(2003).
[CrossRef]

Fukumori, Y.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92, 013104 (2008).
[CrossRef]

Fukuyama, H.

H. Kobatake, H. Fukuyama, and I. Minato, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

Gautier, B.

J. P. Moeglin, B. Gautier, R. C. Joeckle, and D. Bolmont, “Photoelectric performance degradation of several laser-irradiated Si detectors,” Proc. SPIE 3287, 60–66 (1998).
[CrossRef]

J. P. Moeglin, B. Gautier, R. Joeckle, and D. Bolmont, “Electrical behaviour of laser damaged Si-photodiodes,” Opt. Lasers Eng. 28, 317–330 (1997).
[CrossRef]

Glassbrenner, C. J.

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. 134, A1058 (1964).
[CrossRef]

Grischke, R.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Haferkamp, H.

S. Hermann, N. Harder, R. Brendel, D. Herzog, and H. Haferkamp, “Picosecond laser ablation of SiO2 layers on silicon substrates,” Appl. Phys. A 99, 151–158 (2010).
[CrossRef]

Harder, N.

S. Hermann, N. Harder, R. Brendel, D. Herzog, and H. Haferkamp, “Picosecond laser ablation of SiO2 layers on silicon substrates,” Appl. Phys. A 99, 151–158 (2010).
[CrossRef]

Hardt, D. E.

D. V. Trana, H. Y. Zheng, Y. C. Lam, V. M. Murukeshan, J. C. Chai, and D. E. Hardt, “Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses,” Opt. Lasers Eng. 43, 977–986 (2005).
[CrossRef]

Hashimoto, S.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92, 013104 (2008).
[CrossRef]

Hermann, S.

S. Hermann, N. Harder, R. Brendel, D. Herzog, and H. Haferkamp, “Picosecond laser ablation of SiO2 layers on silicon substrates,” Appl. Phys. A 99, 151–158 (2010).
[CrossRef]

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Herzog, D.

S. Hermann, N. Harder, R. Brendel, D. Herzog, and H. Haferkamp, “Picosecond laser ablation of SiO2 layers on silicon substrates,” Appl. Phys. A 99, 151–158 (2010).
[CrossRef]

Itagaki, K.

K. Yamaguchi and K. Itagaki, “Measurement of high temperature heat content of silicon by drop calorimetry,” J. Therm. Anal. Calorim. 69, 1059–1066 (2002).
[CrossRef]

Joeckle, R.

J. P. Moeglin, B. Gautier, R. Joeckle, and D. Bolmont, “Electrical behaviour of laser damaged Si-photodiodes,” Opt. Lasers Eng. 28, 317–330 (1997).
[CrossRef]

Joeckle, R. C.

J. P. Moeglin, B. Gautier, R. C. Joeckle, and D. Bolmont, “Photoelectric performance degradation of several laser-irradiated Si detectors,” Proc. SPIE 3287, 60–66 (1998).
[CrossRef]

Kinoshita, K.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92, 013104 (2008).
[CrossRef]

Klug, U.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Kobatake, H.

H. Kobatake, H. Fukuyama, and I. Minato, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

Lam, Y. C.

D. V. Trana, H. Y. Zheng, Y. C. Lam, V. M. Murukeshan, J. C. Chai, and D. E. Hardt, “Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses,” Opt. Lasers Eng. 43, 977–986 (2005).
[CrossRef]

Li, F. M.

F. M. Li, O. Nixon, and A. Nathan, “Degradation behavior and damage mechanisms of CCD image sensor with deep-UV laser radiation,” IEEE Trans. Electron Devices 51, 2229–2236 (2004).
[CrossRef]

Lu, J.

X. Wang, D. H. Zhu, Z. H. Shen, J. Lu, and X. W. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation” Appl. Surf. Sci. 257, 1583–1588(2010).
[CrossRef]

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103 (2010).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Finite element model of laser-generated surface acoustic waves in coating—substrate system,” J. Appl. Phys. 95, 2109–2116 (2004).
[CrossRef]

Matsuo, S.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92, 013104 (2008).
[CrossRef]

Meyer, R.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Minato, I.

H. Kobatake, H. Fukuyama, and I. Minato, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

Moeglin, J. P.

J. P. Moeglin, B. Gautier, R. C. Joeckle, and D. Bolmont, “Photoelectric performance degradation of several laser-irradiated Si detectors,” Proc. SPIE 3287, 60–66 (1998).
[CrossRef]

J. P. Moeglin, B. Gautier, R. Joeckle, and D. Bolmont, “Electrical behaviour of laser damaged Si-photodiodes,” Opt. Lasers Eng. 28, 317–330 (1997).
[CrossRef]

Murukeshan, V. M.

D. V. Trana, H. Y. Zheng, Y. C. Lam, V. M. Murukeshan, J. C. Chai, and D. E. Hardt, “Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses,” Opt. Lasers Eng. 43, 977–986 (2005).
[CrossRef]

Nathan, A.

F. M. Li, O. Nixon, and A. Nathan, “Degradation behavior and damage mechanisms of CCD image sensor with deep-UV laser radiation,” IEEE Trans. Electron Devices 51, 2229–2236 (2004).
[CrossRef]

Neubert, T.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Ni, X. W.

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103 (2010).
[CrossRef]

X. Wang, D. H. Zhu, Z. H. Shen, J. Lu, and X. W. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation” Appl. Surf. Sci. 257, 1583–1588(2010).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Finite element model of laser-generated surface acoustic waves in coating—substrate system,” J. Appl. Phys. 95, 2109–2116 (2004).
[CrossRef]

Nicolson, P.

J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type,” Proc. Cambridge Philos. Soc. 43, 50–67 (1947).
[CrossRef]

Nixon, O.

F. M. Li, O. Nixon, and A. Nathan, “Degradation behavior and damage mechanisms of CCD image sensor with deep-UV laser radiation,” IEEE Trans. Electron Devices 51, 2229–2236 (2004).
[CrossRef]

Orson, J. A.

P. J. Chernek and J. A. Orson, “Simple thermal response model for a p-doped silicon substrate irradiated by 1.06- and 1.32-δµm lasers,” Proc. SPIE 4679, 186–197 (2002).
[CrossRef]

Plagwitz, H.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Schmid, P. E.

P. E. Schmid, “Optical absorption in heavily doped silicon,” Phys. Rev. B 23, 5531–5536 (1981).
[CrossRef]

Schoonderbeek, A.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Shen, Z. H.

X. Wang, D. H. Zhu, Z. H. Shen, J. Lu, and X. W. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation” Appl. Surf. Sci. 257, 1583–1588(2010).
[CrossRef]

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103 (2010).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Finite element model of laser-generated surface acoustic waves in coating—substrate system,” J. Appl. Phys. 95, 2109–2116 (2004).
[CrossRef]

Slack, G. A.

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. 134, A1058 (1964).
[CrossRef]

Stute, U.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Susa, M.

R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp.-High Pressures 35, 505–511(2003).
[CrossRef]

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).

Tomita, T.

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92, 013104 (2008).
[CrossRef]

Trana, D. V.

D. V. Trana, H. Y. Zheng, Y. C. Lam, V. M. Murukeshan, J. C. Chai, and D. E. Hardt, “Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses,” Opt. Lasers Eng. 43, 977–986 (2005).
[CrossRef]

Walser, R. M.

Wang, X.

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103 (2010).
[CrossRef]

X. Wang, D. H. Zhu, Z. H. Shen, J. Lu, and X. W. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation” Appl. Surf. Sci. 257, 1583–1588(2010).
[CrossRef]

Watkins, S. E.

White, C. W.

R. F. Wood, C. W. White, and R. T. Young, Semiconductors and Semimetals (Academic, 1984), Vol. 23.

Wood, R. F.

R. F. Wood, C. W. White, and R. T. Young, Semiconductors and Semimetals (Academic, 1984), Vol. 23.

Xu, B. Q.

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Finite element model of laser-generated surface acoustic waves in coating—substrate system,” J. Appl. Phys. 95, 2109–2116 (2004).
[CrossRef]

Yamaguchi, K.

K. Yamaguchi and K. Itagaki, “Measurement of high temperature heat content of silicon by drop calorimetry,” J. Therm. Anal. Calorim. 69, 1059–1066 (2002).
[CrossRef]

Young, R. T.

R. F. Wood, C. W. White, and R. T. Young, Semiconductors and Semimetals (Academic, 1984), Vol. 23.

Zhang, C.-Z.

Zheng, H. Y.

D. V. Trana, H. Y. Zheng, Y. C. Lam, V. M. Murukeshan, J. C. Chai, and D. E. Hardt, “Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses,” Opt. Lasers Eng. 43, 977–986 (2005).
[CrossRef]

Zhu, D. H.

X. Wang, D. H. Zhu, Z. H. Shen, J. Lu, and X. W. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation” Appl. Surf. Sci. 257, 1583–1588(2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

S. Hermann, N. Harder, R. Brendel, D. Herzog, and H. Haferkamp, “Picosecond laser ablation of SiO2 layers on silicon substrates,” Appl. Phys. A 99, 151–158 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Observation of laser-induced surface waves on flat silicon surface,” Appl. Phys. Lett. 92, 013104 (2008).
[CrossRef]

H. Kobatake, H. Fukuyama, and I. Minato, “Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field,” Appl. Phys. Lett. 90, 094102 (2007).
[CrossRef]

Appl. Surf. Sci. (1)

X. Wang, D. H. Zhu, Z. H. Shen, J. Lu, and X. W. Ni, “Surface damage morphology investigations of silicon under millisecond laser irradiation” Appl. Surf. Sci. 257, 1583–1588(2010).
[CrossRef]

High Temp.-High Pressures (1)

R. K. Endo, Y. Fujihara, and M. Susa, “Calculation of the density and heat capacity of silicon by molecular dynamics simulation,” High Temp.-High Pressures 35, 505–511(2003).
[CrossRef]

IEEE Trans. Electron Devices (1)

F. M. Li, O. Nixon, and A. Nathan, “Degradation behavior and damage mechanisms of CCD image sensor with deep-UV laser radiation,” IEEE Trans. Electron Devices 51, 2229–2236 (2004).
[CrossRef]

J. Appl. Phys. (2)

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Finite element model of laser-generated surface acoustic waves in coating—substrate system,” J. Appl. Phys. 95, 2109–2116 (2004).
[CrossRef]

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108, 033103 (2010).
[CrossRef]

J. Therm. Anal. Calorim. (1)

K. Yamaguchi and K. Itagaki, “Measurement of high temperature heat content of silicon by drop calorimetry,” J. Therm. Anal. Calorim. 69, 1059–1066 (2002).
[CrossRef]

Opt. Lasers Eng. (2)

D. V. Trana, H. Y. Zheng, Y. C. Lam, V. M. Murukeshan, J. C. Chai, and D. E. Hardt, “Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses,” Opt. Lasers Eng. 43, 977–986 (2005).
[CrossRef]

J. P. Moeglin, B. Gautier, R. Joeckle, and D. Bolmont, “Electrical behaviour of laser damaged Si-photodiodes,” Opt. Lasers Eng. 28, 317–330 (1997).
[CrossRef]

Phys. Rev. (1)

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. 134, A1058 (1964).
[CrossRef]

Phys. Rev. B (1)

P. E. Schmid, “Optical absorption in heavily doped silicon,” Phys. Rev. B 23, 5531–5536 (1981).
[CrossRef]

Proc. Cambridge Philos. Soc. (1)

J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type,” Proc. Cambridge Philos. Soc. 43, 50–67 (1947).
[CrossRef]

Proc. SPIE (2)

J. P. Moeglin, B. Gautier, R. C. Joeckle, and D. Bolmont, “Photoelectric performance degradation of several laser-irradiated Si detectors,” Proc. SPIE 3287, 60–66 (1998).
[CrossRef]

P. J. Chernek and J. A. Orson, “Simple thermal response model for a p-doped silicon substrate irradiated by 1.06- and 1.32-δµm lasers,” Proc. SPIE 4679, 186–197 (2002).
[CrossRef]

Prog. Photovoltaics (1)

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovoltaics 15, 521–527 (2007).
[CrossRef]

Other (2)

S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).

R. F. Wood, C. W. White, and R. T. Young, Semiconductors and Semimetals (Academic, 1984), Vol. 23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram for laser irradiation PIN photodiode.

Fig. 2.
Fig. 2.

Evolution of temperature at the central point of the top surface.

Fig. 3.
Fig. 3.

Temperature distribution along the radial direction at the end of laser irradiation.

Fig. 4.
Fig. 4.

Temperature distribution along the axial direction at the end of laser irradiation.

Fig. 5.
Fig. 5.

Diagram of the melting pool; bold line is with antireflection coating, fine line is without antireflection coating.

Fig. 6.
Fig. 6.

Temperature evolution of the laser spot center under different doping concentrations.

Fig. 7.
Fig. 7.

Temperature evolution of the laser spot center under different junction depths.

Tables (3)

Tables Icon

Table 1. Physical Parameters of Silicon

Tables Icon

Table 2. Physical Parameters of SiO2, AL, and Kovar

Tables Icon

Table 3. Value of ΔαFC(1064nm,N) in Different Concentrations

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ρicidtTi(r,z,t)=1rr(rkiTi(r,z,t)r)+z(kiTi(r,z,t)z)+qi(T,r,z,t)(i=1,2),
kT(r,z,t)z|z=H=kT(r,z,t)r|r=L=0.
kT(r,z,t)r|r=0=0.
T(r,z,t)|t=0=T0,
q=qi+qr,
qi(T,z,r,t)=I0(1R(T))α(T,z)f(r)g(t)exp(α(T,z)z),
qr(T,z,r,t)=I0(1R(T))α(T,z)f(r)g(t)exp(α(T,z)(2dz)),
f(r)=exp(2r2a02),
g(t)={1,0<tτ0,t>τ,
I(r,t)=I0exp(2r2a02),
I0=Eπa02τ=Esτ,
α(λ,T)=αFC(λ,N,T)+αI(λ,T)α(1064nm,T0)×(T/T0)4(0N1016cm3),
[C]{T˙}+[Kth]{T}={Q},
(1Δt[C]+θ[Kth]){T}t=(1Δt[C](θ)[Kth]){T}t+Δt+θ{Q}t+(1θ){Q}t+Δt,
Igene=qAniW2×τ0,
α(λ,N,T)=(αFC(λ,T)+ΔαFC(λ,N))+αI(λ,T)=α(λ,T)+ΔαFC(λ,N)α(1064nm,T0)×(T/T0)4+ΔαFC(1064nm,N).

Metrics