Abstract

A porous material was considered as a platform for optical sensing. It was envisaged that the porous material was infiltrated by a fluid that contains an agent to be sensed. Changes in the optical properties of the infiltrated porous material provide the basis for detection of the agent to be sensed. Using a homogenization approach based on the Bruggeman formalism, wherein the infiltrated porous material was regarded as a homogenized composite material, the sensitivity of such a sensor was investigated. For the case of an isotropic dielectric porous material of relative permittivity ϵa and an isotropic dielectric fluid of relative permittivity ϵb, it was found that the sensitivity was maximized when there was a large contrast between ϵa and ϵb; the maximum sensitivity was achieved at midrange values of porosity. Especially high sensitivities may be achieved for ϵb close to unity when ϵa1, for example. Furthermore, higher sensitivities may be achieved by incorporating pores that have elongated spheroidal shapes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
    [CrossRef]
  2. E. Pinet, S. Dube, M. Vachon-Savary, J.-S. Cote, and M. Poliquin, “Sensitive chemical optic sensor using birefringent porous glass for the detection of volatile organic compounds,” IEEE Sens. J. 6, 854–860 (2006).
    [CrossRef]
  3. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754–3764 (2005).
    [CrossRef]
  4. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [CrossRef]
  5. I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
    [CrossRef]
  6. S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity–based biosensors,” Biosens. Bioelectron. 25, 957–966 (2010).
    [CrossRef]
  7. A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, “Sculptured thin films (STFs) for optical, chemical and biological applications,” Innovations Mater. Res. 1, 165–176 (1996).
  8. A. Lakhtakia, “On determining gas concentrations using thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B 52, 243–250 (1998).
    [CrossRef]
  9. A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 145–148 (2001).
    [CrossRef]
  10. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics. (SPIE, 2005).
  11. R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
    [CrossRef]
  12. J. A. Polo, “Sculptured thin films,” in Micromanufacturing and Nanotechnology, N. P. Mahalik, ed. (Springer, 2005), pp. 357–381.
  13. S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
    [CrossRef]
  14. J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and chiral sculptured thin film,” Proc. R. Soc. London Ser. A 465, 87–107 (2009).
    [CrossRef]
  15. Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
    [CrossRef]
  16. J. A. Polo, T. G. Mackay, and A. Lakhtakia, “Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film,” J. Opt. Soc. Am. B 28, 2656–2666 (2011).
    [CrossRef]
  17. T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012).
    [CrossRef]
  18. The entire analysis presented herein may also be applied to lossless, homogeneous, isotropic magnetic materials, by replacing relative permittivities by the corresponding relative permeabilities throughout.
  19. L. Ward, The Optical Constants of Bulk Materials and Films, 2nd ed. (Institute of Physics, 2000).
  20. T. G. Mackay, “Effective constitutive parameters of linear nanocomposites in the long-wavelength regime,” J. Nanophoton. 5, 051001 (2011).
    [CrossRef]
  21. T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010).
    [CrossRef]
  22. T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
    [CrossRef]
  23. T. G. Mackay and A. Lakhtakia, “Modeling columnar thin films as platforms for surface–plasmonic–polaritonic optical sensing,” Photon. Nanostr. Fundam. Appl. 8, 140–149(2010).
    [CrossRef]
  24. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
    [CrossRef]
  25. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Erratum,” Microw. Opt. Technol. Lett. 22, 221 (1999).
    [CrossRef]
  26. B. Michel, “A Fourier space approach to the pointwise singularity of an anisotropic dielectric medium,” Int. J. Appl. Electromagn. Mech. 8, 219–227 (1997).
  27. B. Michel and W. S. Weiglhofer, “Pointwise singularity of dyadic Green function in a general bianisotropic medium,” Arch. Elektron. Übertrag. 51, 219–223 (1997).
  28. B. Michel and W. S. Weiglhofer, “Erratum,” Arch. Elektron. Übertrag. 52, 31 (1998).
  29. T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric mediums with hyperbolic dispersion relations,” Microw. Opt. Technol. Lett. 48, 363–367 (2006).
    [CrossRef]
  30. L. Bremer, R. Tuinier, and S. Jahromi, “High refractive index nanocomposite fluids for immersion lithography,” Langmuir 25, 2390–2401 (2009).
    [CrossRef]
  31. P. Schiebener and J. Straub, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
    [CrossRef]
  32. C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
    [CrossRef]
  33. C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
    [CrossRef]
  34. J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
    [CrossRef]
  35. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
    [CrossRef]
  36. A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
    [CrossRef]
  37. G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Antennas Propagat. 1, 177–183 (2007).
    [CrossRef]
  38. M. N. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ϵ and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83, 115112 (2011).
    [CrossRef]
  39. J. J. H. Cook, K. L. Tsakmakidis, and O. Hess, “Ultralow-loss optical diamagnetism in silver nanoforests,” J. Opt. A 11, 114026 (2009).
    [CrossRef]
  40. T. G. Mackay, “On the effective permittivity of silver–insulator nanocomposites,” J. Nanophoton. 1, 019501 (2007).
    [CrossRef]

2012 (1)

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012).
[CrossRef]

2011 (5)

T. G. Mackay, “Effective constitutive parameters of linear nanocomposites in the long-wavelength regime,” J. Nanophoton. 5, 051001 (2011).
[CrossRef]

J. A. Polo, T. G. Mackay, and A. Lakhtakia, “Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film,” J. Opt. Soc. Am. B 28, 2656–2666 (2011).
[CrossRef]

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[CrossRef]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

M. N. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ϵ and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83, 115112 (2011).
[CrossRef]

2010 (5)

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Modeling columnar thin films as platforms for surface–plasmonic–polaritonic optical sensing,” Photon. Nanostr. Fundam. Appl. 8, 140–149(2010).
[CrossRef]

S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity–based biosensors,” Biosens. Bioelectron. 25, 957–966 (2010).
[CrossRef]

2009 (6)

L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
[CrossRef]

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and chiral sculptured thin film,” Proc. R. Soc. London Ser. A 465, 87–107 (2009).
[CrossRef]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[CrossRef]

J. J. H. Cook, K. L. Tsakmakidis, and O. Hess, “Ultralow-loss optical diamagnetism in silver nanoforests,” J. Opt. A 11, 114026 (2009).
[CrossRef]

L. Bremer, R. Tuinier, and S. Jahromi, “High refractive index nanocomposite fluids for immersion lithography,” Langmuir 25, 2390–2401 (2009).
[CrossRef]

2008 (1)

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

2007 (4)

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[CrossRef]

T. G. Mackay, “On the effective permittivity of silver–insulator nanocomposites,” J. Nanophoton. 1, 019501 (2007).
[CrossRef]

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Antennas Propagat. 1, 177–183 (2007).
[CrossRef]

2006 (2)

T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric mediums with hyperbolic dispersion relations,” Microw. Opt. Technol. Lett. 48, 363–367 (2006).
[CrossRef]

E. Pinet, S. Dube, M. Vachon-Savary, J.-S. Cote, and M. Poliquin, “Sensitive chemical optic sensor using birefringent porous glass for the detection of volatile organic compounds,” IEEE Sens. J. 6, 854–860 (2006).
[CrossRef]

2005 (1)

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef]

2001 (1)

A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 145–148 (2001).
[CrossRef]

2000 (1)

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

1999 (1)

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Erratum,” Microw. Opt. Technol. Lett. 22, 221 (1999).
[CrossRef]

1998 (2)

B. Michel and W. S. Weiglhofer, “Erratum,” Arch. Elektron. Übertrag. 52, 31 (1998).

A. Lakhtakia, “On determining gas concentrations using thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B 52, 243–250 (1998).
[CrossRef]

1997 (3)

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
[CrossRef]

B. Michel, “A Fourier space approach to the pointwise singularity of an anisotropic dielectric medium,” Int. J. Appl. Electromagn. Mech. 8, 219–227 (1997).

B. Michel and W. S. Weiglhofer, “Pointwise singularity of dyadic Green function in a general bianisotropic medium,” Arch. Elektron. Übertrag. 51, 219–223 (1997).

1996 (1)

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, “Sculptured thin films (STFs) for optical, chemical and biological applications,” Innovations Mater. Res. 1, 165–176 (1996).

1990 (1)

P. Schiebener and J. Straub, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

Alù, A.

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Beruete, M.

M. N. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ϵ and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83, 115112 (2011).
[CrossRef]

Bremer, L.

L. Bremer, R. Tuinier, and S. Jahromi, “High refractive index nanocomposite fluids for immersion lithography,” Langmuir 25, 2390–2401 (2009).
[CrossRef]

Brett, M. J.

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, “Sculptured thin films (STFs) for optical, chemical and biological applications,” Innovations Mater. Res. 1, 165–176 (1996).

Burghignoli, P.

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Antennas Propagat. 1, 177–183 (2007).
[CrossRef]

Campillo, I.

M. N. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ϵ and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83, 115112 (2011).
[CrossRef]

Canciello, M.

L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
[CrossRef]

Capolino, F.

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Antennas Propagat. 1, 177–183 (2007).
[CrossRef]

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

Cook, J. J. H.

J. J. H. Cook, K. L. Tsakmakidis, and O. Hess, “Ultralow-loss optical diamagnetism in silver nanoforests,” J. Opt. A 11, 114026 (2009).
[CrossRef]

Cote, J.-S.

E. Pinet, S. Dube, M. Vachon-Savary, J.-S. Cote, and M. Poliquin, “Sensitive chemical optic sensor using birefringent porous glass for the detection of volatile organic compounds,” IEEE Sens. J. 6, 854–860 (2006).
[CrossRef]

De Stefano, L.

L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
[CrossRef]

De Tommasi, E.

L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
[CrossRef]

Depine, R. A.

T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric mediums with hyperbolic dispersion relations,” Microw. Opt. Technol. Lett. 48, 363–367 (2006).
[CrossRef]

Devender,

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

Dube, S.

E. Pinet, S. Dube, M. Vachon-Savary, J.-S. Cote, and M. Poliquin, “Sensitive chemical optic sensor using birefringent porous glass for the detection of volatile organic compounds,” IEEE Sens. J. 6, 854–860 (2006).
[CrossRef]

Engheta, N.

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Fan, S.

J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[CrossRef]

Fauchet, P. M.

Hess, O.

J. J. H. Cook, K. L. Tsakmakidis, and O. Hess, “Ultralow-loss optical diamagnetism in silver nanoforests,” J. Opt. A 11, 114026 (2009).
[CrossRef]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef]

Horn, M. W.

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[CrossRef]

Jackson, D. R.

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Antennas Propagat. 1, 177–183 (2007).
[CrossRef]

Jahromi, S.

L. Bremer, R. Tuinier, and S. Jahromi, “High refractive index nanocomposite fluids for immersion lithography,” Langmuir 25, 2390–2401 (2009).
[CrossRef]

Kang, K.-Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

Lakhtakia, A.

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012).
[CrossRef]

J. A. Polo, T. G. Mackay, and A. Lakhtakia, “Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film,” J. Opt. Soc. Am. B 28, 2656–2666 (2011).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Modeling columnar thin films as platforms for surface–plasmonic–polaritonic optical sensing,” Photon. Nanostr. Fundam. Appl. 8, 140–149(2010).
[CrossRef]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and chiral sculptured thin film,” Proc. R. Soc. London Ser. A 465, 87–107 (2009).
[CrossRef]

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric mediums with hyperbolic dispersion relations,” Microw. Opt. Technol. Lett. 48, 363–367 (2006).
[CrossRef]

A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 145–148 (2001).
[CrossRef]

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Erratum,” Microw. Opt. Technol. Lett. 22, 221 (1999).
[CrossRef]

A. Lakhtakia, “On determining gas concentrations using thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B 52, 243–250 (1998).
[CrossRef]

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
[CrossRef]

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, “Sculptured thin films (STFs) for optical, chemical and biological applications,” Innovations Mater. Res. 1, 165–176 (1996).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics. (SPIE, 2005).

Lederer, F.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

Lee, Y.-H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

Lovat, G.

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Antennas Propagat. 1, 177–183 (2007).
[CrossRef]

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012).
[CrossRef]

J. A. Polo, T. G. Mackay, and A. Lakhtakia, “Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film,” J. Opt. Soc. Am. B 28, 2656–2666 (2011).
[CrossRef]

T. G. Mackay, “Effective constitutive parameters of linear nanocomposites in the long-wavelength regime,” J. Nanophoton. 5, 051001 (2011).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Modeling columnar thin films as platforms for surface–plasmonic–polaritonic optical sensing,” Photon. Nanostr. Fundam. Appl. 8, 140–149(2010).
[CrossRef]

T. G. Mackay, “On the effective permittivity of silver–insulator nanocomposites,” J. Nanophoton. 1, 019501 (2007).
[CrossRef]

T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric mediums with hyperbolic dispersion relations,” Microw. Opt. Technol. Lett. 48, 363–367 (2006).
[CrossRef]

Maglio, G.

L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
[CrossRef]

Mascini, M.

S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity–based biosensors,” Biosens. Bioelectron. 25, 957–966 (2010).
[CrossRef]

Menzel, C.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

Messier, R.

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, “Sculptured thin films (STFs) for optical, chemical and biological applications,” Innovations Mater. Res. 1, 165–176 (1996).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics. (SPIE, 2005).

Michel, B.

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Erratum,” Microw. Opt. Technol. Lett. 22, 221 (1999).
[CrossRef]

B. Michel and W. S. Weiglhofer, “Erratum,” Arch. Elektron. Übertrag. 52, 31 (1998).

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
[CrossRef]

B. Michel, “A Fourier space approach to the pointwise singularity of an anisotropic dielectric medium,” Int. J. Appl. Electromagn. Mech. 8, 219–227 (1997).

B. Michel and W. S. Weiglhofer, “Pointwise singularity of dyadic Green function in a general bianisotropic medium,” Arch. Elektron. Übertrag. 51, 219–223 (1997).

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

Minunni, M.

S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity–based biosensors,” Biosens. Bioelectron. 25, 957–966 (2010).
[CrossRef]

Navarro-Cía, M. N.

M. N. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ϵ and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83, 115112 (2011).
[CrossRef]

Palumbo, R.

L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
[CrossRef]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

Paul, T.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

Pertsch, T.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

Pinet, E.

E. Pinet, S. Dube, M. Vachon-Savary, J.-S. Cote, and M. Poliquin, “Sensitive chemical optic sensor using birefringent porous glass for the detection of volatile organic compounds,” IEEE Sens. J. 6, 854–860 (2006).
[CrossRef]

Poliquin, M.

E. Pinet, S. Dube, M. Vachon-Savary, J.-S. Cote, and M. Poliquin, “Sensitive chemical optic sensor using birefringent porous glass for the detection of volatile organic compounds,” IEEE Sens. J. 6, 854–860 (2006).
[CrossRef]

Polo, J. A.

J. A. Polo, T. G. Mackay, and A. Lakhtakia, “Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film,” J. Opt. Soc. Am. B 28, 2656–2666 (2011).
[CrossRef]

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and chiral sculptured thin film,” Proc. R. Soc. London Ser. A 465, 87–107 (2009).
[CrossRef]

J. A. Polo, “Sculptured thin films,” in Micromanufacturing and Nanotechnology, N. P. Mahalik, ed. (Springer, 2005), pp. 357–381.

Pulsifer, D. P.

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

Pursel, S. M.

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[CrossRef]

Rea, I.

L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
[CrossRef]

Rendina, I.

L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
[CrossRef]

Robbie, K.

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, “Sculptured thin films (STFs) for optical, chemical and biological applications,” Innovations Mater. Res. 1, 165–176 (1996).

Rockstuhl, C.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

Rotiroti, L.

L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
[CrossRef]

Saarinen, J. J.

Salandrino, A.

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Scarano, S.

S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity–based biosensors,” Biosens. Bioelectron. 25, 957–966 (2010).
[CrossRef]

Schiebener, P.

P. Schiebener and J. Straub, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Shen, J. T.

J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[CrossRef]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[CrossRef]

Silveirinha, M.

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Simovski, C. R.

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[CrossRef]

Sipe, J. E.

Sorolla, M.

M. N. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ϵ and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83, 115112 (2011).
[CrossRef]

Straub, J.

P. Schiebener and J. Straub, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Sunal, P. D.

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Tretyakov, S.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

Tsakmakidis, K. L.

J. J. H. Cook, K. L. Tsakmakidis, and O. Hess, “Ultralow-loss optical diamagnetism in silver nanoforests,” J. Opt. A 11, 114026 (2009).
[CrossRef]

Tuinier, R.

L. Bremer, R. Tuinier, and S. Jahromi, “High refractive index nanocomposite fluids for immersion lithography,” Langmuir 25, 2390–2401 (2009).
[CrossRef]

Turner, A. P. F.

S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity–based biosensors,” Biosens. Bioelectron. 25, 957–966 (2010).
[CrossRef]

Vachon-Savary, M.

E. Pinet, S. Dube, M. Vachon-Savary, J.-S. Cote, and M. Poliquin, “Sensitive chemical optic sensor using birefringent porous glass for the detection of volatile organic compounds,” IEEE Sens. J. 6, 854–860 (2006).
[CrossRef]

Venugopal, V. C.

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Ward, L.

L. Ward, The Optical Constants of Bulk Materials and Films, 2nd ed. (Institute of Physics, 2000).

Weiglhofer, W. S.

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Erratum,” Microw. Opt. Technol. Lett. 22, 221 (1999).
[CrossRef]

B. Michel and W. S. Weiglhofer, “Erratum,” Arch. Elektron. Übertrag. 52, 31 (1998).

B. Michel and W. S. Weiglhofer, “Pointwise singularity of dyadic Green function in a general bianisotropic medium,” Arch. Elektron. Übertrag. 51, 219–223 (1997).

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
[CrossRef]

Weiss, S. M.

Zourob, M.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef]

Arch. Elektron. Übertrag. (2)

B. Michel and W. S. Weiglhofer, “Pointwise singularity of dyadic Green function in a general bianisotropic medium,” Arch. Elektron. Übertrag. 51, 219–223 (1997).

B. Michel and W. S. Weiglhofer, “Erratum,” Arch. Elektron. Übertrag. 52, 31 (1998).

Biosens. Bioelectron. (1)

S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity–based biosensors,” Biosens. Bioelectron. 25, 957–966 (2010).
[CrossRef]

Electromagnetics (1)

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

Electron. Lett. (1)

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

IEEE Photon. J. (1)

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[CrossRef]

IEEE Sens. J. (2)

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012).
[CrossRef]

E. Pinet, S. Dube, M. Vachon-Savary, J.-S. Cote, and M. Poliquin, “Sensitive chemical optic sensor using birefringent porous glass for the detection of volatile organic compounds,” IEEE Sens. J. 6, 854–860 (2006).
[CrossRef]

IET Microw. Antennas Propagat. (1)

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Antennas Propagat. 1, 177–183 (2007).
[CrossRef]

Innovations Mater. Res. (1)

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, “Sculptured thin films (STFs) for optical, chemical and biological applications,” Innovations Mater. Res. 1, 165–176 (1996).

Int. J. Appl. Electromagn. Mech. (1)

B. Michel, “A Fourier space approach to the pointwise singularity of an anisotropic dielectric medium,” Int. J. Appl. Electromagn. Mech. 8, 219–227 (1997).

J. Appl. Phys. (1)

L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009).
[CrossRef]

J. Nanophoton. (3)

T. G. Mackay, “Effective constitutive parameters of linear nanocomposites in the long-wavelength regime,” J. Nanophoton. 5, 051001 (2011).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010).
[CrossRef]

T. G. Mackay, “On the effective permittivity of silver–insulator nanocomposites,” J. Nanophoton. 1, 019501 (2007).
[CrossRef]

J. Opt. (1)

C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).
[CrossRef]

J. Opt. A (1)

J. J. H. Cook, K. L. Tsakmakidis, and O. Hess, “Ultralow-loss optical diamagnetism in silver nanoforests,” J. Opt. A 11, 114026 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

P. Schiebener and J. Straub, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

J. Vac. Sci. Technol. A (1)

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[CrossRef]

Langmuir (1)

L. Bremer, R. Tuinier, and S. Jahromi, “High refractive index nanocomposite fluids for immersion lithography,” Langmuir 25, 2390–2401 (2009).
[CrossRef]

Microw. Opt. Technol. Lett. (3)

T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric mediums with hyperbolic dispersion relations,” Microw. Opt. Technol. Lett. 48, 363–367 (2006).
[CrossRef]

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
[CrossRef]

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Erratum,” Microw. Opt. Technol. Lett. 22, 221 (1999).
[CrossRef]

Nature (1)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[CrossRef]

Opt. Express (1)

Optik (1)

A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 145–148 (2001).
[CrossRef]

Photon. Nanostr. Fundam. Appl. (1)

T. G. Mackay and A. Lakhtakia, “Modeling columnar thin films as platforms for surface–plasmonic–polaritonic optical sensing,” Photon. Nanostr. Fundam. Appl. 8, 140–149(2010).
[CrossRef]

Phys. Rev. B (3)

A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

M. N. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ϵ and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83, 115112 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and chiral sculptured thin film,” Proc. R. Soc. London Ser. A 465, 87–107 (2009).
[CrossRef]

Sens. Actuators B (1)

A. Lakhtakia, “On determining gas concentrations using thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B 52, 243–250 (1998).
[CrossRef]

Other (4)

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics. (SPIE, 2005).

J. A. Polo, “Sculptured thin films,” in Micromanufacturing and Nanotechnology, N. P. Mahalik, ed. (Springer, 2005), pp. 357–381.

The entire analysis presented herein may also be applied to lossless, homogeneous, isotropic magnetic materials, by replacing relative permittivities by the corresponding relative permeabilities throughout.

L. Ward, The Optical Constants of Bulk Materials and Films, 2nd ed. (Institute of Physics, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic illustration of a spheroidal pore filled with a fluid of relative permittivity ϵb, embedded in a material of relative permittivity ϵa. The spheroid’s semimajor and semiminor axes have lengths U and U, respectively, with the semimajor axis being aligned with the direction of c^, per Eq. (2).

Fig. 2.
Fig. 2.

Bruggeman estimate of the relative permittivity of the infiltrated porous material ϵBr plotted versus the relative permittivity of the infiltrating fluid ϵb(1,3) and the porosity fb(0,1), for the relative permittivity of the porous material ϵa{1.5,5,15}. Also plotted are the corresponding derivatives dϵBr/dϵb.

Fig. 3.
Fig. 3.

Bruggeman estimate of the relative permittivity parameters of the infiltrated porous material ϵ,Br plotted versus the relative permittivity of the infiltrating fluid ϵb(1,3) and the porosity fb(0,1), for the pore shape parameter ρ=10 and the relative permittivity of the porous material ϵa=15. Also plotted are the corresponding derivatives dϵ,Br/dϵb.

Fig. 4.
Fig. 4.

As Fig. 3, except that the pore shape parameter ρ=0.1.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

rs(θ,ϕ)=η·r^(θ,ϕ),
=U+(UU)c^c^,
ϵ̳Br=ϵBr+(ϵBrϵBr)c^c^.
faα̳a+fbα̳b=,
α̳=(ϵϵ̳Br)·[+·(ϵϵ̳Br)]1(=a,b),
=14π02πdϕ0πdθsinθ(1r^·1·ϵ̳Br·1·r^)1·r^r^·1.
=D+(DD)c^c^,
D=γϵBrΓ(γ),
D=1ϵBrΓ(γ),
Γ(γ)=14π02πdϕ0πdθcos2ϕsin3θcos2θ+sin2θ(γcos2ϕ+sin2ϕ),
Γ(γ)=14π02πdϕ0πdθsin2ϕsin3θcos2θ+sin2θ(γcos2ϕ+sin2ϕ),
γ=U2ϵBrU2ϵBr.
Γ(γ)={sinh11γγ(1γ)3211γfor0<γ<11γ1sec1γ(γ1)32forγ1,
Γ(γ)={12(11γγsinh11γγ(1γ)32)for0<γ<112(γsec1γ(γ1)321γ1)forγ>1.
ϵaϵBr1+D(ϵaϵBr)fa+ϵb-ϵBr1+D(ϵbϵBr)fb=0,
ϵaϵBr1+D(ϵaϵBr)fa+ϵbϵBr1+D(ϵbϵBr)fb=0,
dϵ̳Brdϵb=dϵBrdϵb+(dϵBrdϵbdϵBrdϵb)c^c^.
dDdϵb=ν11dϵBrdϵb+ν12dϵBrdϵb,
dDdϵb=ν21dϵBrdϵb+ν22dϵBrdϵb,
ν11=U2U2ϵBrϵBr(Γ+γdΓdγ)γΓ(ϵBr)2,
ν12=U2U2(ϵBr)2(Γ+γdΓdγ),
ν21=(U2U2(ϵBr)2)dΓdγ,
ν22=(U2ϵBrU2(ϵBr)3)dΓdγΓ(ϵBr)2,
dΓdγ={12(3sinh11γγ(1γ)521+2γ(1γ)2γ)for0<γ<112(1+2γ(γ1)2γ+3sec1γ(γ1)52)forγ>1,
dΓdγ={14(3(1γ)2(2+γ)sinh11γγ(1γ)52)for0<γ<114((2+γ)sec1γ(γ1)52+3(γ1)2)forγ>1.
β11dϵBrdϵb+β12dϵBrdϵb+β13=0,
β21dϵBrdϵb+β22dϵBrdϵb+β23=0,
β11=ν11(ϵaϵBr)(ϵbϵBr)+D(2ϵBrϵaϵb)1,
β12=ν12(ϵaϵBr)(ϵbϵBr),
β13=fb+D(ϵaϵBr),
β21=ν21(ϵaϵBr)(ϵbϵBr),
β22=ν22(ϵaϵBr)(ϵbϵBr)+D(2ϵBrϵaϵb)1,
β23=fb+D(ϵaϵBr).
dϵBrdϵb=β12β23β22β13β11β22β12β21,
dϵBrdϵb=β21β13β11β23β11β22β12β21.

Metrics