Abstract

We report on laser operation in a (6 at. % Tm, 5 at. % Yb):KLu(WO4)2 codoped crystal. The vibrational frequencies of KLu(WO4)2 are coupled to the electronic transitions of Tm3+ at 1946 nm, creating virtual final laser levels at higher energy than the ground level H63 of Tm3+. The longest recorded laser wavelength was 2039 nm, which is longer than permitted by a pure electronic transition in Tm3+ ions in KLu(WO4)2. We show that every laser wavelength can be explained with the electron–phonon coupling effect, where the vibration frequencies were determined through Raman spectroscopy.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C.R. Physique 8, 1100–1128 (2007).
    [CrossRef]
  2. X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
    [CrossRef]
  3. X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
    [CrossRef]
  4. V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
    [CrossRef]
  5. A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
    [CrossRef]
  6. M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
    [CrossRef]
  7. A. Ellens, S. Schenker, A. Meijerink, and G. Blasse, “Vibronic transitions of Tm3+ in various lattices,” J. Lumin. 69, 1–15 (1996).
    [CrossRef]
  8. F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, “Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser,” Opt. Express 12, 1982–1989 (2004).
    [CrossRef]
  9. F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron. 44, 1076–1082 (2008).
    [CrossRef]
  10. N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 µm,” Opt. Lett. 34, 3559–3561 (2009).
    [CrossRef]
  11. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990).
    [CrossRef]
  12. W. Ryba-Romanowski, R. Lisieckia, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
    [CrossRef]
  13. P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
    [CrossRef]
  14. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advanced Solid State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.
  15. Y. F. Li, Y. Z. Wang, and B. Q. Yao, “Comparative optical study of thulium-doped YAlO3 and GdVO4 single crystals,” Laser Phys. Lett. 5, 37–40 (2008).
    [CrossRef]
  16. L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B 75, 457–461 (2002).
    [CrossRef]
  17. O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
    [CrossRef]
  18. L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
    [CrossRef]
  19. M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010).
    [CrossRef]
  20. S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
    [CrossRef]

2011 (2)

W. Ryba-Romanowski, R. Lisieckia, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[CrossRef]

2010 (2)

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010).
[CrossRef]

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

2009 (1)

2008 (2)

Y. F. Li, Y. Z. Wang, and B. Q. Yao, “Comparative optical study of thulium-doped YAlO3 and GdVO4 single crystals,” Laser Phys. Lett. 5, 37–40 (2008).
[CrossRef]

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron. 44, 1076–1082 (2008).
[CrossRef]

2007 (3)

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C.R. Physique 8, 1100–1128 (2007).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

2006 (2)

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

2004 (2)

F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, “Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser,” Opt. Express 12, 1982–1989 (2004).
[CrossRef]

X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
[CrossRef]

2002 (2)

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
[CrossRef]

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B 75, 457–461 (2002).
[CrossRef]

1998 (1)

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

1996 (1)

A. Ellens, S. Schenker, A. Meijerink, and G. Blasse, “Vibronic transitions of Tm3+ in various lattices,” J. Lumin. 69, 1–15 (1996).
[CrossRef]

1990 (1)

Aguiló, M.

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010).
[CrossRef]

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
[CrossRef]

X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
[CrossRef]

Aznar, A.

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
[CrossRef]

Bagayev, S. N.

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

Batay, L. E.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B 75, 457–461 (2002).
[CrossRef]

Bernardini, C.

Blasse, G.

A. Ellens, S. Schenker, A. Meijerink, and G. Blasse, “Vibronic transitions of Tm3+ in various lattices,” J. Lumin. 69, 1–15 (1996).
[CrossRef]

Boulon, G.

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

Bourgeois, F.

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

Carvajal, J. J.

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010).
[CrossRef]

Coluccelli, N.

Cornacchia, F.

Demidovich, A. A.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B 75, 457–461 (2002).
[CrossRef]

Di Lieto, A.

Díaz, F.

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010).
[CrossRef]

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
[CrossRef]

X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
[CrossRef]

Eichler, H. E.

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

Ellens, A.

A. Ellens, S. Schenker, A. Meijerink, and G. Blasse, “Vibronic transitions of Tm3+ in various lattices,” J. Lumin. 69, 1–15 (1996).
[CrossRef]

Esterowitz, L.

Findeisen, J.

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

Fuhrberg, P.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advanced Solid State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.

Galan, M.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Galzerano, G.

Gavaldà, J.

X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
[CrossRef]

Godard, A.

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C.R. Physique 8, 1100–1128 (2007).
[CrossRef]

Griebner, U.

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
[CrossRef]

Güell, F.

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

Hanuza, J.

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
[CrossRef]

Huber, G.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advanced Solid State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.

Jelinková, H.

W. Ryba-Romanowski, R. Lisieckia, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

Kaminskii, A. A.

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
[CrossRef]

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

Koopmann, P.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advanced Solid State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.

Kück, S.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B 75, 457–461 (2002).
[CrossRef]

Kuzmin, A. N.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B 75, 457–461 (2002).
[CrossRef]

Kuznetsov, F. A.

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

Lamrini, S.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advanced Solid State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.

Laporta, P.

Li, Y. F.

Y. F. Li, Y. Z. Wang, and B. Q. Yao, “Comparative optical study of thulium-doped YAlO3 and GdVO4 single crystals,” Laser Phys. Lett. 5, 37–40 (2008).
[CrossRef]

Lisieckia, R.

W. Ryba-Romanowski, R. Lisieckia, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

Liu, J.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Macalik, L.

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
[CrossRef]

Massons, J.

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
[CrossRef]

X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
[CrossRef]

Mateos, X.

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010).
[CrossRef]

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
[CrossRef]

X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
[CrossRef]

Meijerink, A.

A. Ellens, S. Schenker, A. Meijerink, and G. Blasse, “Vibronic transitions of Tm3+ in various lattices,” J. Lumin. 69, 1–15 (1996).
[CrossRef]

Mond, M.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B 75, 457–461 (2002).
[CrossRef]

Parisi, D.

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron. 44, 1076–1082 (2008).
[CrossRef]

F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, “Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser,” Opt. Express 12, 1982–1989 (2004).
[CrossRef]

Pavlyuk, A. A.

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

Petermann, K.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advanced Solid State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.

Peters, R.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[CrossRef]

Petrov, V.

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010).
[CrossRef]

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
[CrossRef]

Pujol, M. C.

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010).
[CrossRef]

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
[CrossRef]

Rico, M.

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

Rivier, S.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

Ryba-Romanowski, W.

W. Ryba-Romanowski, R. Lisieckia, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

Schenker, S.

A. Ellens, S. Schenker, A. Meijerink, and G. Blasse, “Vibronic transitions of Tm3+ in various lattices,” J. Lumin. 69, 1–15 (1996).
[CrossRef]

Scholle, K.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advanced Solid State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.

Segura, M.

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010).
[CrossRef]

Silvestre, O.

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

Solans, X.

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
[CrossRef]

Solé, R.

X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
[CrossRef]

Solé, R. M.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

Stoneman, R. C.

Šulc, J.

W. Ryba-Romanowski, R. Lisieckia, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

Surinach, S.

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
[CrossRef]

Titov, A. N.

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B 75, 457–461 (2002).
[CrossRef]

Toncelli, A.

Tonelli, M.

Ueda, K.

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

Vatnik, S.

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

Vedin, I.

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

Viera, G.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Wang, Y. Z.

Y. F. Li, Y. Z. Wang, and B. Q. Yao, “Comparative optical study of thulium-doped YAlO3 and GdVO4 single crystals,” Laser Phys. Lett. 5, 37–40 (2008).
[CrossRef]

Yao, B. Q.

Y. F. Li, Y. Z. Wang, and B. Q. Yao, “Comparative optical study of thulium-doped YAlO3 and GdVO4 single crystals,” Laser Phys. Lett. 5, 37–40 (2008).
[CrossRef]

Appl. Phys. B (3)

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[CrossRef]

L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, “Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm,” Appl. Phys. B 75, 457–461 (2002).
[CrossRef]

O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007).
[CrossRef]

C.R. Physique (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C.R. Physique 8, 1100–1128 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

X. Mateos, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà, J. Massons, F. Díaz, and U. Griebner, “Continuous wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2,” IEEE J. Quantum Electron. 40, 1056–1059 (2004).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron. 44, 1076–1082 (2008).
[CrossRef]

J. Appl. Crystallogr. (1)

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, and M. Aguiló, “Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2,” J. Appl. Crystallogr. 39, 230–236 (2006).
[CrossRef]

J. Lumin. (1)

A. Ellens, S. Schenker, A. Meijerink, and G. Blasse, “Vibronic transitions of Tm3+ in various lattices,” J. Lumin. 69, 1–15 (1996).
[CrossRef]

J. Raman Spectrosc. (1)

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis,” J. Raman Spectrosc. 33, 92–103 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagayev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, “Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: new χ(3)-active crystals for laser Raman shifters,” Jpn. J. Appl. Phys. 37, L923–L926 (1998).
[CrossRef]

Laser Photon. Rev. (1)

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[CrossRef]

Laser Phys. Lett. (2)

Y. F. Li, Y. Z. Wang, and B. Q. Yao, “Comparative optical study of thulium-doped YAlO3 and GdVO4 single crystals,” Laser Phys. Lett. 5, 37–40 (2008).
[CrossRef]

S. Vatnik, I. Vedin, M. C. Pujol, X. Mateos, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy,” Laser Phys. Lett. 7, 435–439 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Procedia (1)

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, V. Petrov, M. Aguiló, and F. Díaz, “CW laser operation around 2 µm in (Tm,Yb):KLu(WO4)2,” Phys. Procedia 8, 157–161 (2010).
[CrossRef]

Prog. Quantum Electron. (1)

W. Ryba-Romanowski, R. Lisieckia, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

Other (1)

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advanced Solid State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Generated output power versus absorbed pump power for the (6 at. % Tm, 5 at. % Yb):KLuW laser for several transmissions of the output coupler.

Fig. 2.
Fig. 2.

Laser spectra for (6 at. % Tm, 5 at. % Yb):KLuW with T oc = 1.5 % at several absorbed power levels.

Fig. 3.
Fig. 3.

Raman spectra of (6 at. % Tm, 5 at. % Yb):KLuW for propagation along N g . The excitation beam is polarized along N m g ( m p ) g ¯ [same as g ( p p ) g ¯ ] or N p g ( p m ) g ¯ [same as g ( m m ) g ¯ ].

Fig. 4.
Fig. 4.

Energy levels associated with the (6 at. % Tm, 5 at. % Yb):KLuW laser.

Tables (2)

Tables Icon

Table 1. Tunability of Tm Lasers Based on Vibronic Transitions: Examples Selected for Wavelengths Exceeding 1950 nm (Fluorides) and 2000 nm (Oxides)

Tables Icon

Table 2. Calculated Virtual Energy Levels according to Coupling of the Four Low-Energy Phonons of Fig. 3 with the Three Upper Stark Levels of the Ground-State Multiplet of Tm in KLuWa

Metrics