Abstract

Absorption spectra of gold nanoisland thin film and the composite film of gold having thin coating of Methylene Blue and Rh6G dyes have been studied. Thin gold nanoisland film shows surface plasmon resonance (SPR) peak in the visible wavelength range, which shifts to near infrared with an increase in the thickness of the film. It was found that thin film of gold consists of nanoparticles of different size and shape, particularly nanorods of noncylindrical shapes. A linear relation was found between SPR peak wavelength and the aspect ratio of the nanoparticles in gold thin film. Effective medium refractive index of the gold film is estimated to be 2.5, which decreases with an increase in film thickness. The coating of dyes on gold films splits the SPR peak with an enhanced absorption. Enhancement in absorption of composite film is maximal when the dye absorption peak coincides with the SPR peak; otherwise enhancement in transmission is observed for all the wavelength range. Absorption amplitude of composite film peaks increase with an increase in the gold film thickness, which tend toward saturation for film thickness of 6nm. A correlation shows that absorption spectra can be described by the Maxwell Garnett theory, when the gold nanoparticles have a nearly spherical shape for very thin film (6nm).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nie and R. Emory, “Probing single molecule and single nanoparticle by surface enhanced Raman scattering,” Science 275, 1102 (1997).
    [CrossRef]
  2. M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  3. S. A. Maier, Plasmonics Fundamentals and Applications (Springer Science, 2007).
  4. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
    [CrossRef]
  5. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  6. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer-Verlag, 1995).
  7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  8. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  9. C. Hugglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
    [CrossRef]
  10. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
    [CrossRef]
  11. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
    [CrossRef]
  12. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
    [CrossRef]
  13. H. G. Craighead and A. M. Glass, “Optical absorption of small metal particles with adsorbed dye coats,” Opt. Lett. 6, 248–250 (1981).
    [CrossRef]
  14. V. N. Rai, “Optical properties of silver-island films having an over layer of RhB dye,” Appl. Opt. 26, 2395–2400 (1987).
    [CrossRef]
  15. V. N. Rai, “Optical properties of RhB and Rh6G on silver surfaces,” Pramana J. Phys. 31, 313–322 (1988).
    [CrossRef]
  16. V. S. Lebedev, A. S. Medvedev, D. N. Vasilev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
    [CrossRef]
  17. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 45, 2897–2899 (1999).
    [CrossRef]
  18. A. Harslein, J. R. Kirtley, and J. C. Tsang, “Enhancement of infrared absorption from molecular monolayers with thin metal over layers,” Phys. Rev. Lett. 45, 201–204(1980).
    [CrossRef]
  19. S. K. Gray, “Surface plasmon enhanced spectroscopy and photochemistry,” Plasmonics 2, 143–146 (2007).
    [CrossRef]
  20. R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271 (2002) and references therein.
    [CrossRef]
  21. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. Roy. Soc. 203, 385–420 (1904).
    [CrossRef]
  22. J. I. Treu, “Mie scattering, Maxwell Garnett theory and the Giaever immunology slide,” Appl. Opt. 15, 2746–2750 (1976).
    [CrossRef]
  23. S. Link and M. A. El-Sayed, “Simulation of optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 109, 10531–10532 (2005).
    [CrossRef]
  24. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
    [CrossRef]
  25. A. Serrano, O. R. de la Fuente, and M. A. Garcia, “Extended and localized surface plasmons in annealed Au films on glass substrate,” J. Appl. Phys. 108, 074303 (2010).
    [CrossRef]
  26. J. Cesario, M. U. Gonzalez, S. Cheylam, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling of localized and extended plasmons to improve the light extraction through metal film,” Opt. Express 15, 10533–10539 (2007).
    [CrossRef]
  27. X. Wang, K. Chen, M. Zhao, and D. D. Nolte, “Refractive index and dielectric constant evolution of ultra-thin gold from clusters to films,” Opt. Express 18, 24859–24867 (2010).
    [CrossRef]
  28. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape and medium refractive index,” J. Phys. Chem. B 109, 20331–20338 (2005).
    [CrossRef]
  29. J. R. Hollahan, T. Wydeven, and C. C. Johnson, “Combination moisture resistant and antireflection plasma polymerized thin films for optical coatings,” Appl. Opt. 13, 1844–1849 (1974).
    [CrossRef]
  30. E. Ritter, “Optical film materials and their applications,” Appl. Opt. 15, 2318–2327 (1976).
    [CrossRef]
  31. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  32. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003).
    [CrossRef]
  33. T. A. Lee, S.-W. Lee, J.-A. Jung, J. Ahn, M.-G. Kim, and Y.-B. Shin, “Signal amplification by enzymatic reaction in an immunosensor based on localized surface plasmon resonance,” Sensors 10, 2045–2053 (2010).
    [CrossRef]

2010 (4)

V. S. Lebedev, A. S. Medvedev, D. N. Vasilev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[CrossRef]

A. Serrano, O. R. de la Fuente, and M. A. Garcia, “Extended and localized surface plasmons in annealed Au films on glass substrate,” J. Appl. Phys. 108, 074303 (2010).
[CrossRef]

T. A. Lee, S.-W. Lee, J.-A. Jung, J. Ahn, M.-G. Kim, and Y.-B. Shin, “Signal amplification by enzymatic reaction in an immunosensor based on localized surface plasmon resonance,” Sensors 10, 2045–2053 (2010).
[CrossRef]

X. Wang, K. Chen, M. Zhao, and D. D. Nolte, “Refractive index and dielectric constant evolution of ultra-thin gold from clusters to films,” Opt. Express 18, 24859–24867 (2010).
[CrossRef]

2009 (1)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[CrossRef]

2008 (2)

C. Hugglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef]

2007 (4)

J. Cesario, M. U. Gonzalez, S. Cheylam, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling of localized and extended plasmons to improve the light extraction through metal film,” Opt. Express 15, 10533–10539 (2007).
[CrossRef]

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[CrossRef]

S. K. Gray, “Surface plasmon enhanced spectroscopy and photochemistry,” Plasmonics 2, 143–146 (2007).
[CrossRef]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

2005 (3)

S. Link and M. A. El-Sayed, “Simulation of optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 109, 10531–10532 (2005).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape and medium refractive index,” J. Phys. Chem. B 109, 20331–20338 (2005).
[CrossRef]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003).
[CrossRef]

2002 (1)

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271 (2002) and references therein.
[CrossRef]

1999 (2)

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 45, 2897–2899 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1997 (1)

S. Nie and R. Emory, “Probing single molecule and single nanoparticle by surface enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef]

1988 (1)

V. N. Rai, “Optical properties of RhB and Rh6G on silver surfaces,” Pramana J. Phys. 31, 313–322 (1988).
[CrossRef]

1987 (1)

1985 (1)

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1981 (1)

1980 (1)

A. Harslein, J. R. Kirtley, and J. C. Tsang, “Enhancement of infrared absorption from molecular monolayers with thin metal over layers,” Phys. Rev. Lett. 45, 201–204(1980).
[CrossRef]

1976 (2)

1974 (1)

1904 (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. Roy. Soc. 203, 385–420 (1904).
[CrossRef]

Ahn, J.

T. A. Lee, S.-W. Lee, J.-A. Jung, J. Ahn, M.-G. Kim, and Y.-B. Shin, “Signal amplification by enzymatic reaction in an immunosensor based on localized surface plasmon resonance,” Sensors 10, 2045–2053 (2010).
[CrossRef]

Barnes, W. L.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

Bonod, N.

Catchpole, K. R.

Cesario, J.

Chen, K.

Cheylam, S.

Chubich, D. A.

V. S. Lebedev, A. S. Medvedev, D. N. Vasilev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Craighead, H. G.

de la Fuente, O. R.

A. Serrano, O. R. de la Fuente, and M. A. Garcia, “Extended and localized surface plasmons in annealed Au films on glass substrate,” J. Appl. Phys. 108, 074303 (2010).
[CrossRef]

Dyer, M. J.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271 (2002) and references therein.
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape and medium refractive index,” J. Phys. Chem. B 109, 20331–20338 (2005).
[CrossRef]

S. Link and M. A. El-Sayed, “Simulation of optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 109, 10531–10532 (2005).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Emory, R.

S. Nie and R. Emory, “Probing single molecule and single nanoparticle by surface enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef]

Enoch, S.

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Garcia, M. A.

A. Serrano, O. R. de la Fuente, and M. A. Garcia, “Extended and localized surface plasmons in annealed Au films on glass substrate,” J. Appl. Phys. 108, 074303 (2010).
[CrossRef]

Garnett, J. C. Maxwell

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. Roy. Soc. 203, 385–420 (1904).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Glass, A. M.

Gonzalez, M. U.

Gray, S. K.

S. K. Gray, “Surface plasmon enhanced spectroscopy and photochemistry,” Plasmonics 2, 143–146 (2007).
[CrossRef]

Gupta, R.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271 (2002) and references therein.
[CrossRef]

Halas, N. J.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 45, 2897–2899 (1999).
[CrossRef]

Harslein, A.

A. Harslein, J. R. Kirtley, and J. C. Tsang, “Enhancement of infrared absorption from molecular monolayers with thin metal over layers,” Phys. Rev. Lett. 45, 201–204(1980).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

Hollahan, J. R.

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

Hugglund, C.

C. Hugglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

Jackson, J. B.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 45, 2897–2899 (1999).
[CrossRef]

Johnson, C. C.

Jung, J.-A.

T. A. Lee, S.-W. Lee, J.-A. Jung, J. Ahn, M.-G. Kim, and Y.-B. Shin, “Signal amplification by enzymatic reaction in an immunosensor based on localized surface plasmon resonance,” Sensors 10, 2045–2053 (2010).
[CrossRef]

Kasemo, B.

C. Hugglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kim, M.-G.

T. A. Lee, S.-W. Lee, J.-A. Jung, J. Ahn, M.-G. Kim, and Y.-B. Shin, “Signal amplification by enzymatic reaction in an immunosensor based on localized surface plasmon resonance,” Sensors 10, 2045–2053 (2010).
[CrossRef]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

Kirtley, J. R.

A. Harslein, J. R. Kirtley, and J. C. Tsang, “Enhancement of infrared absorption from molecular monolayers with thin metal over layers,” Phys. Rev. Lett. 45, 201–204(1980).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer-Verlag, 1995).

Lebedev, V. S.

V. S. Lebedev, A. S. Medvedev, D. N. Vasilev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[CrossRef]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape and medium refractive index,” J. Phys. Chem. B 109, 20331–20338 (2005).
[CrossRef]

Lee, S.-W.

T. A. Lee, S.-W. Lee, J.-A. Jung, J. Ahn, M.-G. Kim, and Y.-B. Shin, “Signal amplification by enzymatic reaction in an immunosensor based on localized surface plasmon resonance,” Sensors 10, 2045–2053 (2010).
[CrossRef]

Lee, T. A.

T. A. Lee, S.-W. Lee, J.-A. Jung, J. Ahn, M.-G. Kim, and Y.-B. Shin, “Signal amplification by enzymatic reaction in an immunosensor based on localized surface plasmon resonance,” Sensors 10, 2045–2053 (2010).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, L.

Link, S.

S. Link and M. A. El-Sayed, “Simulation of optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 109, 10531–10532 (2005).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics Fundamentals and Applications (Springer Science, 2007).

Medvedev, A. S.

V. S. Lebedev, A. S. Medvedev, D. N. Vasilev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[CrossRef]

Neviere, M.

Nie, S.

S. Nie and R. Emory, “Probing single molecule and single nanoparticle by surface enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[CrossRef]

Nolte, D. D.

Oldenburg, S. J.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 45, 2897–2899 (1999).
[CrossRef]

Polman, A.

Popov, E.

Quidant, R.

Rai, V. N.

V. N. Rai, “Optical properties of RhB and Rh6G on silver surfaces,” Pramana J. Phys. 31, 313–322 (1988).
[CrossRef]

V. N. Rai, “Optical properties of silver-island films having an over layer of RhB dye,” Appl. Opt. 26, 2395–2400 (1987).
[CrossRef]

Ritter, E.

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Serrano, A.

A. Serrano, O. R. de la Fuente, and M. A. Garcia, “Extended and localized surface plasmons in annealed Au films on glass substrate,” J. Appl. Phys. 108, 074303 (2010).
[CrossRef]

Shin, Y.-B.

T. A. Lee, S.-W. Lee, J.-A. Jung, J. Ahn, M.-G. Kim, and Y.-B. Shin, “Signal amplification by enzymatic reaction in an immunosensor based on localized surface plasmon resonance,” Sensors 10, 2045–2053 (2010).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Treu, J. I.

Tsang, J. C.

A. Harslein, J. R. Kirtley, and J. C. Tsang, “Enhancement of infrared absorption from molecular monolayers with thin metal over layers,” Phys. Rev. Lett. 45, 201–204(1980).
[CrossRef]

Vasilev, D. N.

V. S. Lebedev, A. S. Medvedev, D. N. Vasilev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[CrossRef]

Vitukhnovsky, A. G.

V. S. Lebedev, A. S. Medvedev, D. N. Vasilev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer-Verlag, 1995).

Wang, X.

Weimer, W. A.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271 (2002) and references therein.
[CrossRef]

Westcott, S. L.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 45, 2897–2899 (1999).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Wydeven, T.

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zach, M.

C. Hugglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zhao, M.

Adv. Mater. (1)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

C. Hugglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 45, 2897–2899 (1999).
[CrossRef]

Biosens. Bioelectron. (1)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

J. Appl. Phys. (2)

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271 (2002) and references therein.
[CrossRef]

A. Serrano, O. R. de la Fuente, and M. A. Garcia, “Extended and localized surface plasmons in annealed Au films on glass substrate,” J. Appl. Phys. 108, 074303 (2010).
[CrossRef]

J. Phys. Chem. B (4)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape and medium refractive index,” J. Phys. Chem. B 109, 20331–20338 (2005).
[CrossRef]

S. Link and M. A. El-Sayed, “Simulation of optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 109, 10531–10532 (2005).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

J. Phys. Chem. C (1)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Philos. Trans. Roy. Soc. (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. Roy. Soc. 203, 385–420 (1904).
[CrossRef]

Phys. Rev. Lett. (1)

A. Harslein, J. R. Kirtley, and J. C. Tsang, “Enhancement of infrared absorption from molecular monolayers with thin metal over layers,” Phys. Rev. Lett. 45, 201–204(1980).
[CrossRef]

Plasmonics (1)

S. K. Gray, “Surface plasmon enhanced spectroscopy and photochemistry,” Plasmonics 2, 143–146 (2007).
[CrossRef]

Pramana J. Phys. (1)

V. N. Rai, “Optical properties of RhB and Rh6G on silver surfaces,” Pramana J. Phys. 31, 313–322 (1988).
[CrossRef]

Quantum Electron. (1)

V. S. Lebedev, A. S. Medvedev, D. N. Vasilev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Science (1)

S. Nie and R. Emory, “Probing single molecule and single nanoparticle by surface enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef]

Sensors (1)

T. A. Lee, S.-W. Lee, J.-A. Jung, J. Ahn, M.-G. Kim, and Y.-B. Shin, “Signal amplification by enzymatic reaction in an immunosensor based on localized surface plasmon resonance,” Sensors 10, 2045–2053 (2010).
[CrossRef]

Other (3)

S. A. Maier, Plasmonics Fundamentals and Applications (Springer Science, 2007).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer-Verlag, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Absorption spectra of gold thin film of various thicknesses: (1) 0.5, (2) 1, (3) 2, (4) 3, (5) 3.4, (6) 6, and (7) 10 nm.

Fig. 2.
Fig. 2.

Variation in the size and shape of nanoparticles in gold films of 6 nm thickness. (a) TEM micrograph, (b) variation in ellipticity of nanoparticles on substrate, and (c) AFM micrograph. (d) Nanoparticles have an average height of 4.5nm, with a base of triangular shape.

Fig. 3.
Fig. 3.

Variation in SPR peak wavelength (λmax) with aspect ratio of nanoparticles present in thin gold film.

Fig. 4.
Fig. 4.

Variation in (λmax/λp)2 with (2+F)/(1F) obtained for each gold film.

Fig. 5.
Fig. 5.

Absorption spectra of gold thin films along with composite film of gold having coating of Methylene Blue (MB) dye: (1) 3 nm gold, (2) 3 nm gold+MB, (3) 6 nm gold, (4) 6 nm gold+MB, (5) 10 nm gold, and (6) 10 nm gold+MB.

Fig. 6.
Fig. 6.

Absorption spectra of composite film of gold of different thicknesses having coating of Rh6G: (1) 0.5, (2) 1, (3) 2, (4) 3, (5) 6, (6) 10, and (7) 15 nm.

Fig. 7.
Fig. 7.

Variation in the amplitude of split SPR peaks with thickness of gold film in the case of Methylene Blue dye coated gold thin film.

Fig. 8.
Fig. 8.

Variation in the amplitude of split SPR peaks with thickness of gold film in the case of Rh6G dye coated gold thin film.

Tables (2)

Tables Icon

Table 1. Average Ellipticity, Aspect Ratio of the Nanoparticles, and Corresponding λmax for Different Thicknesses of Gold Film

Tables Icon

Table 2. Value of (λmax/λp), Fractional Area F, and Refractive Index ns for Different Thicknesses of Gold Film

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Cscat=16π(2πλ)4|α|2,Cabs=2πλIm[α],
α=3V[εMεHεM+2εH]
εM=1ωp2ω2+iγω,
ε=εH(3+2Fα)(3Fα),
ε=nik.
λm=λp[1+(2+F1F)ns2]12.
λmax=95R+420.
λmax=54R+539.

Metrics