Abstract

In this paper, we have introduced optically controlled two-mode interference (OTMI) coupler having silicon core and GaAsInP cladding as an all-optical switch. By taking advantage of refractive index modulation by launching optical pulse into cladding region of TMI waveguide, we have shown optically controlled switching operation. We have studied optical pulse-controlled coupling characteristics of the proposed device by using a simple mathematical model on the basis of sinusoidal modes. The device length is less than that of previous work. It is also seen that the cross talk of the OTMI switch is not significantly increased with fabrication tolerances (±δw) in comparison with previous work.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Xia, Y. Liang, and K. H. Ahn, “All optical packet drop demonstration using 100  Gb/s words by integrating fiber based components,” IEEE Photon Technology Lett. 10, 153–155 (1998).
    [CrossRef]
  2. J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).
  3. I. Glesk, J. P. Solokoff, and P. R. Prucnal, “All optical address recognition and self routing in a 250  Gbit/s packet switched network,” Electron Lett. 30, 1322–1323 (1994).
    [CrossRef]
  4. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  5. R. Kashahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structures of silica-based planar light wave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol. 20, 993–1000 (2002).
    [CrossRef]
  6. Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “Rearrangeable non-blocking thermooptic 4×4 switching matrix in silicon on insulator,” IEE Proc. Optoelectron. 152, 161–163 (2005).
  7. P. Zappe, Introduction to Semiconductor Integrated Optics(Artech House, 1995).
  8. M. K. Chin, C. W. Lee, S. Y. Lee, and S. Darmawan, “High-index-contrast waveguides and devices,” Appl. Opt. 44, 3077–3086 (2005).
    [CrossRef]
  9. P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265–269 (2008).
  10. Z. Li, Z. Chen, and B. Li, “Optical pulse controlled all optical logic gates in siGe/Si multimode interference,” Opt. Express 13, 1033–1037 (2005).
    [CrossRef]
  11. L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices on self imaging: principle and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  12. B. M. Isfahani, T. A. Tameh, N. Granpayeh, and A. R. M. Javan, “All optical NOR gate based on nonlinear photonic crystal mirroring resonators,” J. Opt. Soc. Am. B 26, 1097–1102 (2009).
    [CrossRef]
  13. Q. Xu and M. Lipson, “All optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–928 (2007).
    [CrossRef]
  14. P. P. Sahu, “Compact optical multiplexer using silicon nano-waveguide,” IEEE J. Sel. Top. Quantum Electron. 15, 1537–1540 (2009).
    [CrossRef]
  15. B. Li and S. J. Chua, “Two mode interference photonic waveguide switch,” IEEE J. Lightwave Technol. 21, 1685–1690 (2003).
    [CrossRef]
  16. P. P. Sahu, “Thermooptic two mode interference optical waveguide device with fast response time,” Fiber Integr. Opt. 29, 284–293 (2010).
    [CrossRef]
  17. K. Vlachos, N. Pieros, C. Bintjas, G. Theophilopoulos, and H. Avramopoulos, “Ultrfast time domain technology and its applications in signal processing,” J. Lightwave Technol. 21, 1857–1868 (2003).
    [CrossRef]
  18. G. S. Kanter, P. Kumar, K. R. Parameswaram, and M. M. Fejer, “Wavelength selective pulsed optical switching based on cascaded second order nonliearity in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 13, 341–343 (2001).
    [CrossRef]
  19. D. Sridharan and E. Waks, “All optical switch using quantum dots saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron. 47, 31–39 (2011).
    [CrossRef]
  20. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kurmochi, “Fast bistable all optical switch and memory on a silicon photonic crystal on chip,” Opt. Lett. 30, 2575–2577 (2005).
    [CrossRef]
  21. Z. H. Zhu, W. M. Ye, J. R. Ji, X. Yuan, and C. Zen, “High contrast light by light switching and AND gate based on nonlinear photonic crystals,” Opt. Express 14, 1783–1788 (2006).
    [CrossRef]
  22. A. Bahrami, S. Mohammadnejad, and A. Rostami, “All-optical multi-mode interference switch using non-linear directional coupler as a passive phase shifter,” Fiber Integr. Opt. 30, 139–150 (2011).
    [CrossRef]
  23. R. Ghayour, A. N. Taheri, and M. T. Fathi, “Integrated Mach-Zehnder based 2×2 all optical switch using nonlinear two-mode interference waveguide,” Appl. Opt. 47, 632–638 (2008).
    [CrossRef]
  24. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High speed optical modulationbased on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
    [CrossRef]
  25. Z. Li, Z. Chen, and B. Li, “Optical pulse controlled all optical logic gates in siGe/Si multimode interference,” Opt. Express 13, 1033–1037 (2005).
    [CrossRef]
  26. R. S. Grant and W. Sibbett, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991).
    [CrossRef]

2011

D. Sridharan and E. Waks, “All optical switch using quantum dots saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron. 47, 31–39 (2011).
[CrossRef]

A. Bahrami, S. Mohammadnejad, and A. Rostami, “All-optical multi-mode interference switch using non-linear directional coupler as a passive phase shifter,” Fiber Integr. Opt. 30, 139–150 (2011).
[CrossRef]

2010

P. P. Sahu, “Thermooptic two mode interference optical waveguide device with fast response time,” Fiber Integr. Opt. 29, 284–293 (2010).
[CrossRef]

2009

2008

2007

2006

2005

2004

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).

2003

2002

2001

G. S. Kanter, P. Kumar, K. R. Parameswaram, and M. M. Fejer, “Wavelength selective pulsed optical switching based on cascaded second order nonliearity in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 13, 341–343 (2001).
[CrossRef]

1998

T. J. Xia, Y. Liang, and K. H. Ahn, “All optical packet drop demonstration using 100  Gb/s words by integrating fiber based components,” IEEE Photon Technology Lett. 10, 153–155 (1998).
[CrossRef]

1995

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices on self imaging: principle and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

1994

I. Glesk, J. P. Solokoff, and P. R. Prucnal, “All optical address recognition and self routing in a 250  Gbit/s packet switched network,” Electron Lett. 30, 1322–1323 (1994).
[CrossRef]

1991

R. S. Grant and W. Sibbett, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

Ahn, K. H.

T. J. Xia, Y. Liang, and K. H. Ahn, “All optical packet drop demonstration using 100  Gb/s words by integrating fiber based components,” IEEE Photon Technology Lett. 10, 153–155 (1998).
[CrossRef]

Avramopoulos, H.

Bahrami, A.

A. Bahrami, S. Mohammadnejad, and A. Rostami, “All-optical multi-mode interference switch using non-linear directional coupler as a passive phase shifter,” Fiber Integr. Opt. 30, 139–150 (2011).
[CrossRef]

Bintjas, C.

Byun, Y. T.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).

Chen, S.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “Rearrangeable non-blocking thermooptic 4×4 switching matrix in silicon on insulator,” IEE Proc. Optoelectron. 152, 161–163 (2005).

Chen, Z.

Chetrit, Y.

Chin, M. K.

Chua, S. J.

B. Li and S. J. Chua, “Two mode interference photonic waveguide switch,” IEEE J. Lightwave Technol. 21, 1685–1690 (2003).
[CrossRef]

Ciftcioglu, B.

Darmawan, S.

Fan, Z.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “Rearrangeable non-blocking thermooptic 4×4 switching matrix in silicon on insulator,” IEE Proc. Optoelectron. 152, 161–163 (2005).

Fathi, M. T.

Fejer, M. M.

G. S. Kanter, P. Kumar, K. R. Parameswaram, and M. M. Fejer, “Wavelength selective pulsed optical switching based on cascaded second order nonliearity in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 13, 341–343 (2001).
[CrossRef]

Ghayour, R.

Glesk, I.

I. Glesk, J. P. Solokoff, and P. R. Prucnal, “All optical address recognition and self routing in a 250  Gbit/s packet switched network,” Electron Lett. 30, 1322–1323 (1994).
[CrossRef]

Goh, T.

Granpayeh, N.

Grant, R. S.

R. S. Grant and W. Sibbett, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

Haruna, M.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Himeno, A.

Isfahani, B. M.

Izhaky, N.

Javan, A. R. M.

Ji, J. R.

John, Y. M.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).

Kanter, G. S.

G. S. Kanter, P. Kumar, K. R. Parameswaram, and M. M. Fejer, “Wavelength selective pulsed optical switching based on cascaded second order nonliearity in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 13, 341–343 (2001).
[CrossRef]

Kashahara, R.

Kim, J.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).

Kim, S. H.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).

Kim, Y.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).

Kumar, P.

G. S. Kanter, P. Kumar, K. R. Parameswaram, and M. M. Fejer, “Wavelength selective pulsed optical switching based on cascaded second order nonliearity in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 13, 341–343 (2001).
[CrossRef]

Kurmochi, E.

Lee, B.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).

Lee, C. W.

Lee, S. Y.

Li, B.

Li, Z.

Liang, Y.

T. J. Xia, Y. Liang, and K. H. Ahn, “All optical packet drop demonstration using 100  Gb/s words by integrating fiber based components,” IEEE Photon Technology Lett. 10, 153–155 (1998).
[CrossRef]

Liao, L.

Lipson, M.

Liu, A.

Matsui, S.

Mitsugi, S.

Mohammadnejad, S.

A. Bahrami, S. Mohammadnejad, and A. Rostami, “All-optical multi-mode interference switch using non-linear directional coupler as a passive phase shifter,” Fiber Integr. Opt. 30, 139–150 (2011).
[CrossRef]

Nguyen, H.

Nishihara, H.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Notomi, M.

Paniccia, M.

Parameswaram, K. R.

G. S. Kanter, P. Kumar, K. R. Parameswaram, and M. M. Fejer, “Wavelength selective pulsed optical switching based on cascaded second order nonliearity in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 13, 341–343 (2001).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices on self imaging: principle and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Pieros, N.

Prucnal, P. R.

I. Glesk, J. P. Solokoff, and P. R. Prucnal, “All optical address recognition and self routing in a 250  Gbit/s packet switched network,” Electron Lett. 30, 1322–1323 (1994).
[CrossRef]

Rostami, A.

A. Bahrami, S. Mohammadnejad, and A. Rostami, “All-optical multi-mode interference switch using non-linear directional coupler as a passive phase shifter,” Fiber Integr. Opt. 30, 139–150 (2011).
[CrossRef]

Rubin, D.

Sahu, P. P.

P. P. Sahu, “Thermooptic two mode interference optical waveguide device with fast response time,” Fiber Integr. Opt. 29, 284–293 (2010).
[CrossRef]

P. P. Sahu, “Compact optical multiplexer using silicon nano-waveguide,” IEEE J. Sel. Top. Quantum Electron. 15, 1537–1540 (2009).
[CrossRef]

P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265–269 (2008).

Shinya, A.

Sibbett, W.

R. S. Grant and W. Sibbett, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices on self imaging: principle and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Solokoff, J. P.

I. Glesk, J. P. Solokoff, and P. R. Prucnal, “All optical address recognition and self routing in a 250  Gbit/s packet switched network,” Electron Lett. 30, 1322–1323 (1994).
[CrossRef]

Sridharan, D.

D. Sridharan and E. Waks, “All optical switch using quantum dots saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron. 47, 31–39 (2011).
[CrossRef]

Sugita, A.

Suhara, T.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Taheri, A. N.

Tameh, T. A.

Tanabe, T.

Theophilopoulos, G.

Vlachos, K.

Waks, E.

D. Sridharan and E. Waks, “All optical switch using quantum dots saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron. 47, 31–39 (2011).
[CrossRef]

Wang, Z.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “Rearrangeable non-blocking thermooptic 4×4 switching matrix in silicon on insulator,” IEE Proc. Optoelectron. 152, 161–163 (2005).

Woo, D. H.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).

Xia, J.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “Rearrangeable non-blocking thermooptic 4×4 switching matrix in silicon on insulator,” IEE Proc. Optoelectron. 152, 161–163 (2005).

Xia, T. J.

T. J. Xia, Y. Liang, and K. H. Ahn, “All optical packet drop demonstration using 100  Gb/s words by integrating fiber based components,” IEEE Photon Technology Lett. 10, 153–155 (1998).
[CrossRef]

Xu, Q.

Yanagisawa, M.

Yasu, M.

Ye, W. M.

Yu, J.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “Rearrangeable non-blocking thermooptic 4×4 switching matrix in silicon on insulator,” IEE Proc. Optoelectron. 152, 161–163 (2005).

Yuan, X.

Zappe, P.

P. Zappe, Introduction to Semiconductor Integrated Optics(Artech House, 1995).

Zen, C.

Zhu, Z. H.

Appl. Opt.

Appl. Phys. Lett.

R. S. Grant and W. Sibbett, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

Electron Lett.

I. Glesk, J. P. Solokoff, and P. R. Prucnal, “All optical address recognition and self routing in a 250  Gbit/s packet switched network,” Electron Lett. 30, 1322–1323 (1994).
[CrossRef]

Fiber Integr. Opt.

P. P. Sahu, “Thermooptic two mode interference optical waveguide device with fast response time,” Fiber Integr. Opt. 29, 284–293 (2010).
[CrossRef]

A. Bahrami, S. Mohammadnejad, and A. Rostami, “All-optical multi-mode interference switch using non-linear directional coupler as a passive phase shifter,” Fiber Integr. Opt. 30, 139–150 (2011).
[CrossRef]

IEE Proc. Optoelectron.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “Rearrangeable non-blocking thermooptic 4×4 switching matrix in silicon on insulator,” IEE Proc. Optoelectron. 152, 161–163 (2005).

IEEE J. Lightwave Technol.

B. Li and S. J. Chua, “Two mode interference photonic waveguide switch,” IEEE J. Lightwave Technol. 21, 1685–1690 (2003).
[CrossRef]

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices on self imaging: principle and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

IEEE J. Quantum Electron.

D. Sridharan and E. Waks, “All optical switch using quantum dots saturable absorbers in a DBR microcavity,” IEEE J. Quantum Electron. 47, 31–39 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. P. Sahu, “Compact optical multiplexer using silicon nano-waveguide,” IEEE J. Sel. Top. Quantum Electron. 15, 1537–1540 (2009).
[CrossRef]

IEEE Photon Technology Lett.

T. J. Xia, Y. Liang, and K. H. Ahn, “All optical packet drop demonstration using 100  Gb/s words by integrating fiber based components,” IEEE Photon Technology Lett. 10, 153–155 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

G. S. Kanter, P. Kumar, K. R. Parameswaram, and M. M. Fejer, “Wavelength selective pulsed optical switching based on cascaded second order nonliearity in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 13, 341–343 (2001).
[CrossRef]

Indian J. Phys.

P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265–269 (2008).

J. Korean Phys. Soc.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, B. Lee, S. H. Kim, and D. H. Woo, “All optical logic gates using semiconductor optical amplifier based devices and their applications,” J. Korean Phys. Soc. 45, 1158–1161 (2004).

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

P. Zappe, Introduction to Semiconductor Integrated Optics(Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of optically controlled two-mode interference coupler using channel waveguide with TMI core of width 2w and length Lc: (a) top view, and (b) cross-sectional view with TMI region along line AA.

Fig. 2.
Fig. 2.

Phase change versus optical pulse energy for TMI coupler with n1=3.5,n2(0)=3.17, w=0.398μm, λ=1.53μm, and LC=778.5μm. It also shows effective index change versus Δn(E).

Fig. 3.
Fig. 3.

Normalized cross-state power (P4/P1) and bar-state power (P3/P1) versus optical pulse of energy E for TMI coupler with n1=3.5, n2(0)=3.17, w=0.398μm, λ=1.53μm, and LC=778.5μm. ( and are simulation points obtained by using optiBPM software, solid and dotted curves for Aeff=0.8(μm)2 and dashed curve for Aeff=0.5(μm)2.

Fig. 4.
Fig. 4.

Cross-talk characteristics versus waveguide width tolerance (±δw) for OTMI switch with LC=778.5μm (solid curve) and all-optical MMI switch using nonlinear directional coupler with LC=1261μm (dashed curve) with n1=3.5, n2(0)=3.17, w=0.398μm, and λ=1.53μm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n2(E)n2(0)+nnl.E1.605Aeff.Tf.
H(x,0)=i=01biTHi(x),
P3P1=|H1(x,L,E)H1(x,0)|2P4P1=|H2(x+w,L,E)H1(x,0)|2},
H1(x,L,E)=i=01c1,iTHi(x)exp[j{β0(n1,n2(E))βi(n1,n2(E))}]
H2(x+w,L,E)=i=01c2,iTHi(x+w)exp[j{β0(n1,n2(E))βi(n1,n2(E))}].
ΔϕT(E)=β0(n1,n2(E))βi(n1,n2(E))={β0(n1,n2(0))β1(n1,n2(0))}L+2πLλ[Δn1eff(E)Δn0eff(E)],
Δn1eff(E)=n1eff(0)n1eff(E),
Δn0eff(E)=n0eff(0)n0eff(E),
LC=λ2{Δn1eff(E)Δn0eff(E)}.

Metrics