Abstract

The performance characteristics of a new CH planar laser-induced fluorescence (PLIF) imaging system composed of a kHz-rate multimode-pumped optical parametric oscillator (OPO) and high-speed intensified CMOS camera are investigated in laminar and turbulent CH4-H2-air flames. A multi-channel Nd:YAG cluster that produces up to 225 mJ at 355 nm with multiple-pulse spacing of 100 μs (corresponding to 10 kHz) is used to pump an OPO to produce up to 6 mJ at 431 nm for direct excitation of the A-X (0, 0) band of the CH radical. Single-shot signal-to-noise ratios of 821 and 7.51 are recorded in laminar premixed flames relative to noise in the background and within the flame layer, respectively. The spatial resolution and image quality are sufficient to accurately measure the CH layer thickness of 0.4mm while imaging the detailed evolution of turbulent flame structures over a 20 mm span. Background interferences due to polycyclic-aromatic hydrocarbons and Rayleigh scattering are minimized and, along with signal linearity, allow semi-quantitative analysis of CH signals on a shot-to-shot basis. The effects of design features, such as cavity finesse and passive injection seeding, on conversion efficiency, stability, and linewidth of the OPO output are also discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008).
    [CrossRef]
  2. J. D. Miller, M. N. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009).
    [CrossRef]
  3. J. Sjoholm, E. Kristensson, M. Richter, M. Alden, G. Goritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).
    [CrossRef]
  4. I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
    [CrossRef]
  5. I. Boxx, M. Stohr, C. Carter, and W. Meier, “Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor,” Combust. Flame 157, 1510–1525 (2010).
    [CrossRef]
  6. C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
    [CrossRef]
  7. N. Jiang and W. R. Lempert, “Ultrahigh-frame-rate nitric oxide planar laser-induced fluorescence imaging,” Opt. Lett. 33, 2236–2238 (2008).
    [CrossRef]
  8. N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
    [CrossRef]
  9. N. Jiang, M. C. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011).
    [CrossRef]
  10. J. D. Miller, S. R. Engel, T. R. Meyer, T. Seeger, and A. Leipertz, “High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator,” Opt. Lett. 36, 3927–3929 (2011).
    [CrossRef]
  11. N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Optics 48, B23–B31 (2009).
    [CrossRef]
  12. Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007).
    [CrossRef]
  13. J. A. Sutton and J. F. Driscoll, “Optimization of CH fluorescence diagnostics in flames: Range of applicability and improvements with hydrogen addition,” Appl. Opt. 42, 2819–2828 (2003).
    [CrossRef]
  14. M. Tanahashi, S. Taka, M. Shimura, and T. Miyauchi, “CH double-pulsed PLIF measurement in turbulent premixed flame,” Exp. Fluids 45, 323–332 (2008).
    [CrossRef]
  15. K. A. Watson, K. M. Lyons, C. D. Carter, and J. M. Donbar, “Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames,” Proc. Combust. Inst. 29, 1905–1912 (2002).
    [CrossRef]
  16. K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame,” Combust. Flame 123, 252–265 (2000).
    [CrossRef]
  17. Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, and M. Alden, “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame,” Combust. Flame 157, 1087–1096(2010).
    [CrossRef]
  18. J. Kiefer, F. Ossler, Z. S. Li, and M. Alden, “Spectral interferences from formaldehyde in CH PLIF flame front imaging with broadband B-X excitation,” Combust. Flame 158, 583–585 (2011).
    [CrossRef]
  19. SNLO nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, NM.
  20. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  21. M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997).
    [CrossRef]
  22. Y. B. He and B. J. Orr, “Tunable single-mode operation of a pulsed optical parametric oscillator pumped by a multimode laser,” Appl. Opt. 40, 4836–4848 (2001).
    [CrossRef]
  23. G. A. Raiche and J. B. Jeffries, “Laser-induced fluorescence temperature-measurements in a DC arcjet used for diamond deposition,” Appl. Opt. 32, 4629–4635 (1993).
    [CrossRef]
  24. K. J. Rensberger, J. B. Jeffries, R. A. Copeland, K. Kohsehoinghaus, M. L. Wise, and D. R. Crosley, “Laser-induced fluorescence determination of temperatures in low-pressure flames,” Appl. Opt. 28, 3556–3566 (1989).
    [CrossRef]
  25. J. Luque and D. R. Crosley, “LIFBASE: Database and spectral simulation program (Version 1.5),” SRI International MP 99-009 (1999).
  26. R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B doi:10.1007/s00340-011-4658-1 (2011).
    [CrossRef]
  27. V. Weber, J. Brübach, R. Gordon, and A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103, 421–433 (2011).
    [CrossRef]
  28. J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
    [CrossRef]
  29. C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66, 129–132 (1998).
    [CrossRef]

2011 (6)

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
[CrossRef]

J. Kiefer, F. Ossler, Z. S. Li, and M. Alden, “Spectral interferences from formaldehyde in CH PLIF flame front imaging with broadband B-X excitation,” Combust. Flame 158, 583–585 (2011).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B doi:10.1007/s00340-011-4658-1 (2011).
[CrossRef]

V. Weber, J. Brübach, R. Gordon, and A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103, 421–433 (2011).
[CrossRef]

N. Jiang, M. C. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011).
[CrossRef]

J. D. Miller, S. R. Engel, T. R. Meyer, T. Seeger, and A. Leipertz, “High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator,” Opt. Lett. 36, 3927–3929 (2011).
[CrossRef]

2010 (2)

Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, and M. Alden, “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame,” Combust. Flame 157, 1087–1096(2010).
[CrossRef]

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor,” Combust. Flame 157, 1510–1525 (2010).
[CrossRef]

2009 (4)

J. Sjoholm, E. Kristensson, M. Richter, M. Alden, G. Goritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).
[CrossRef]

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Optics 48, B23–B31 (2009).
[CrossRef]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009).
[CrossRef]

2008 (3)

2007 (1)

Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007).
[CrossRef]

2003 (1)

2002 (1)

K. A. Watson, K. M. Lyons, C. D. Carter, and J. M. Donbar, “Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames,” Proc. Combust. Inst. 29, 1905–1912 (2002).
[CrossRef]

2001 (1)

2000 (1)

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame,” Combust. Flame 123, 252–265 (2000).
[CrossRef]

1999 (1)

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

1998 (1)

C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66, 129–132 (1998).
[CrossRef]

1997 (1)

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997).
[CrossRef]

1996 (1)

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

1993 (1)

1989 (1)

Alden, M.

J. Kiefer, F. Ossler, Z. S. Li, and M. Alden, “Spectral interferences from formaldehyde in CH PLIF flame front imaging with broadband B-X excitation,” Combust. Flame 158, 583–585 (2011).
[CrossRef]

Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, and M. Alden, “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame,” Combust. Flame 157, 1087–1096(2010).
[CrossRef]

J. Sjoholm, E. Kristensson, M. Richter, M. Alden, G. Goritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).
[CrossRef]

Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Bai, X.

Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007).
[CrossRef]

Bai, X. S.

Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, and M. Alden, “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame,” Combust. Flame 157, 1087–1096(2010).
[CrossRef]

Boxx, I.

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor,” Combust. Flame 157, 1510–1525 (2010).
[CrossRef]

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Brübach, J.

V. Weber, J. Brübach, R. Gordon, and A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103, 421–433 (2011).
[CrossRef]

Carter, C.

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor,” Combust. Flame 157, 1510–1525 (2010).
[CrossRef]

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Carter, C. D.

K. A. Watson, K. M. Lyons, C. D. Carter, and J. M. Donbar, “Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames,” Proc. Combust. Inst. 29, 1905–1912 (2002).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame,” Combust. Flame 123, 252–265 (2000).
[CrossRef]

C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66, 129–132 (1998).
[CrossRef]

Copeland, R. A.

Crosley, D. R.

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

K. J. Rensberger, J. B. Jeffries, R. A. Copeland, K. Kohsehoinghaus, M. L. Wise, and D. R. Crosley, “Laser-induced fluorescence determination of temperatures in low-pressure flames,” Appl. Opt. 28, 3556–3566 (1989).
[CrossRef]

J. Luque and D. R. Crosley, “LIFBASE: Database and spectral simulation program (Version 1.5),” SRI International MP 99-009 (1999).

Danehy, P. M.

Donbar, J. M.

K. A. Watson, K. M. Lyons, C. D. Carter, and J. M. Donbar, “Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames,” Proc. Combust. Inst. 29, 1905–1912 (2002).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame,” Combust. Flame 123, 252–265 (2000).
[CrossRef]

C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66, 129–132 (1998).
[CrossRef]

Dreizler, A.

V. Weber, J. Brübach, R. Gordon, and A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103, 421–433 (2011).
[CrossRef]

Driscoll, J. F.

J. A. Sutton and J. F. Driscoll, “Optimization of CH fluorescence diagnostics in flames: Range of applicability and improvements with hydrogen addition,” Appl. Opt. 42, 2819–2828 (2003).
[CrossRef]

C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66, 129–132 (1998).
[CrossRef]

Engel, S. R.

Gabet, K.

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B doi:10.1007/s00340-011-4658-1 (2011).
[CrossRef]

Galech, J.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997).
[CrossRef]

Gardiner, T. D.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997).
[CrossRef]

Gord, J. R.

Gordon, R.

V. Weber, J. Brübach, R. Gordon, and A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103, 421–433 (2011).
[CrossRef]

Goritz, G.

J. Sjoholm, E. Kristensson, M. Richter, M. Alden, G. Goritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).
[CrossRef]

He, Y. B.

Hult, J.

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Ivey, C. B.

Jeffries, J. B.

Jiang, N.

Kaminski, C. F.

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Kiefer, J.

J. Kiefer, F. Ossler, Z. S. Li, and M. Alden, “Spectral interferences from formaldehyde in CH PLIF flame front imaging with broadband B-X excitation,” Combust. Flame 158, 583–585 (2011).
[CrossRef]

Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007).
[CrossRef]

Knebel, K.

J. Sjoholm, E. Kristensson, M. Richter, M. Alden, G. Goritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).
[CrossRef]

Kohsehoinghaus, K.

Kristensson, E.

J. Sjoholm, E. Kristensson, M. Richter, M. Alden, G. Goritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).
[CrossRef]

Leipertz, A.

J. D. Miller, S. R. Engel, T. R. Meyer, T. Seeger, and A. Leipertz, “High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator,” Opt. Lett. 36, 3927–3929 (2011).
[CrossRef]

Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007).
[CrossRef]

Lempert, W.

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B doi:10.1007/s00340-011-4658-1 (2011).
[CrossRef]

Lempert, W. R.

Li, B.

Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, and M. Alden, “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame,” Combust. Flame 157, 1087–1096(2010).
[CrossRef]

Li, Z. S.

J. Kiefer, F. Ossler, Z. S. Li, and M. Alden, “Spectral interferences from formaldehyde in CH PLIF flame front imaging with broadband B-X excitation,” Combust. Flame 158, 583–585 (2011).
[CrossRef]

Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, and M. Alden, “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame,” Combust. Flame 157, 1087–1096(2010).
[CrossRef]

Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007).
[CrossRef]

Linvin, M.

Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007).
[CrossRef]

Luque, J.

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

J. Luque and D. R. Crosley, “LIFBASE: Database and spectral simulation program (Version 1.5),” SRI International MP 99-009 (1999).

Lyons, K. M.

K. A. Watson, K. M. Lyons, C. D. Carter, and J. M. Donbar, “Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames,” Proc. Combust. Inst. 29, 1905–1912 (2002).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame,” Combust. Flame 123, 252–265 (2000).
[CrossRef]

Meier, W.

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor,” Combust. Flame 157, 1510–1525 (2010).
[CrossRef]

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Meyer, T. R.

Miller, J. D.

Milton, M. J. T.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997).
[CrossRef]

Miyauchi, T.

M. Tanahashi, S. Taka, M. Shimura, and T. Miyauchi, “CH double-pulsed PLIF measurement in turbulent premixed flame,” Exp. Fluids 45, 323–332 (2008).
[CrossRef]

Molero, F.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997).
[CrossRef]

Orr, B. J.

Ossler, F.

J. Kiefer, F. Ossler, Z. S. Li, and M. Alden, “Spectral interferences from formaldehyde in CH PLIF flame front imaging with broadband B-X excitation,” Combust. Flame 158, 583–585 (2011).
[CrossRef]

Patton, R.

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B doi:10.1007/s00340-011-4658-1 (2011).
[CrossRef]

Patton, R. A.

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
[CrossRef]

Raiche, G. A.

Rensberger, K. J.

Richter, M.

J. Sjoholm, E. Kristensson, M. Richter, M. Alden, G. Goritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).
[CrossRef]

Seeger, T.

Shimura, M.

M. Tanahashi, S. Taka, M. Shimura, and T. Miyauchi, “CH double-pulsed PLIF measurement in turbulent premixed flame,” Exp. Fluids 45, 323–332 (2008).
[CrossRef]

Sjoholm, J.

J. Sjoholm, E. Kristensson, M. Richter, M. Alden, G. Goritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).
[CrossRef]

Slipchenko, M. N.

Smith, A. V.

SNLO nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, NM.

Stohr, M.

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor,” Combust. Flame 157, 1510–1525 (2010).
[CrossRef]

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Sun, Z. W.

Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, and M. Alden, “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame,” Combust. Flame 157, 1087–1096(2010).
[CrossRef]

Sutton, J.

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B doi:10.1007/s00340-011-4658-1 (2011).
[CrossRef]

Sutton, J. A.

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
[CrossRef]

J. A. Sutton and J. F. Driscoll, “Optimization of CH fluorescence diagnostics in flames: Range of applicability and improvements with hydrogen addition,” Appl. Opt. 42, 2819–2828 (2003).
[CrossRef]

Switzer, G. L.

Taka, S.

M. Tanahashi, S. Taka, M. Shimura, and T. Miyauchi, “CH double-pulsed PLIF measurement in turbulent premixed flame,” Exp. Fluids 45, 323–332 (2008).
[CrossRef]

Tanahashi, M.

M. Tanahashi, S. Taka, M. Shimura, and T. Miyauchi, “CH double-pulsed PLIF measurement in turbulent premixed flame,” Exp. Fluids 45, 323–332 (2008).
[CrossRef]

Watson, K. A.

K. A. Watson, K. M. Lyons, C. D. Carter, and J. M. Donbar, “Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames,” Proc. Combust. Inst. 29, 1905–1912 (2002).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame,” Combust. Flame 123, 252–265 (2000).
[CrossRef]

Weber, V.

V. Weber, J. Brübach, R. Gordon, and A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103, 421–433 (2011).
[CrossRef]

Webster, M. C.

Wise, M. L.

Zetterberg, J.

Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007).
[CrossRef]

Appl. Opt. (6)

Appl. Optics (1)

N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Optics 48, B23–B31 (2009).
[CrossRef]

Appl. Phys. B (6)

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B doi:10.1007/s00340-011-4658-1 (2011).
[CrossRef]

V. Weber, J. Brübach, R. Gordon, and A. Dreizler, “Pixel-based characterisation of CMOS high-speed camera systems,” Appl. Phys. B 103, 421–433 (2011).
[CrossRef]

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66, 129–132 (1998).
[CrossRef]

Combust. Flame (4)

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor,” Combust. Flame 157, 1510–1525 (2010).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame,” Combust. Flame 123, 252–265 (2000).
[CrossRef]

Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, and M. Alden, “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame,” Combust. Flame 157, 1087–1096(2010).
[CrossRef]

J. Kiefer, F. Ossler, Z. S. Li, and M. Alden, “Spectral interferences from formaldehyde in CH PLIF flame front imaging with broadband B-X excitation,” Combust. Flame 158, 583–585 (2011).
[CrossRef]

Exp. Fluids (1)

M. Tanahashi, S. Taka, M. Shimura, and T. Miyauchi, “CH double-pulsed PLIF measurement in turbulent premixed flame,” Exp. Fluids 45, 323–332 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

J. Sjoholm, E. Kristensson, M. Richter, M. Alden, G. Goritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).
[CrossRef]

Opt. Commun. (1)

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997).
[CrossRef]

Opt. Lett. (3)

Proc. Combust. Inst. (3)

Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. Bai, and M. Alden, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007).
[CrossRef]

K. A. Watson, K. M. Lyons, C. D. Carter, and J. M. Donbar, “Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames,” Proc. Combust. Inst. 29, 1905–1912 (2002).
[CrossRef]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
[CrossRef]

Other (3)

SNLO nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, NM.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

J. Luque and D. R. Crosley, “LIFBASE: Database and spectral simulation program (Version 1.5),” SRI International MP 99-009 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the OPO showing double-pass configuration and seed source. OC: output coupler, HR: high reflector, BBO: β-Barium-Borate crystals, BD: beam dump, ECDL: external cavity diode laser.

Fig. 2.
Fig. 2.

Bandwidth of OPO signal resulting from 40% and 60% output couplers (OC). Exponential function while the experimental data is shown with the computed average.

Fig. 3.
Fig. 3.

Effect of seeding on OPO spectral bandwidth and stability (as indicated by width of distribution). The experimentally measured resolution of the spectrometer is 2.4cm1. Each data set is independent and full width at half maximum is determined using a Gaussian fit to the spectra.

Fig. 4.
Fig. 4.

Effect of injection seeding on OPO performance for the double-pass pump configuration at 442 nm. Data are fit using a third-order polynomial.

Fig. 5.
Fig. 5.

Average beam profile from 100 laser shots for pulses #1–4.

Fig. 6.
Fig. 6.

Overlap of filter transmission, CH absorption profile, and measured OPO signal. The CH absorption spectrum is simulated at 2000 K using LIFBASE with known resolution of the OPO signal.

Fig. 7.
Fig. 7.

CH PLIF in a laminar premixed flame (false color). (a) Unfiltered image, (b) off-resonant unfiltered image, (c) unfiltered off-resonant-subtracted image (c=ab), and (d) image with high-pass filter. The data are background subtracted, corrected to the beam profile using Rayleigh scatter in the vertical direction, and normalized to peak CH signal.

Fig. 8.
Fig. 8.

(a) PLIF and background signal as a function of relative intensifier gain with exponential fit and (b) linear response of PLIF signal to increase in excitation energy. Error bars represent the standard deviation among multiple measurements at the same experimental conditions.

Fig. 9.
Fig. 9.

CH PLIF signal-to-noise ratio (a) within the flame layer and (b) relative to the background noise.

Fig. 10.
Fig. 10.

CH PLIF profiles across the premixed flame at 5 mm, 10 mm, 15 mm, and 20 mm above burner. Inset shows the height of each cross-sectional profile. Intensity is normalized to the maximum intensity in the flame layer.

Fig. 11.
Fig. 11.

Single-shot CH-PLIF images in a turbulent diffusion flame with 1 SLPM H2, 1.35 SLPM coflow air, and (a, b) 9.6 SLPM CH4, (c) 11.8 SLPM CH4, and (d) 12.6 SLPM CH4. Each image is background subtracted, corrected for spatial beam profile variations using Rayleigh scattering, and normalized to the peak intensity of each frame.

Tables (2)

Tables Icon

Table 1. Cavity Characteristics for Each Output Coupler from 420 nm to 460 nm

Tables Icon

Table 2. Mean Pump and OPO Output at 431 nm Showing Consistent Conversion Efficiency for Spatially Overlapped Laser Lines #1–4

Metrics