Abstract

Powerful, long-pulse lasers have a variety of applications. In many applications, optical elements are employed to direct, focus, or collimate the beam. Typically the optic is suspended in a gaseous environment (e.g., air) and can cool by convection. The variation of the optic temperature with time is obtained by combining the effects of laser heating, thermal conduction, and convective loss. Characteristics of the solutions in terms of the properties of the optic material, laser beam parameters, and the environment are discussed and compared with measurements at the Naval Research Laboratory, employing kW-class, 1 µm wavelength, continuous wave lasers and optical elements made of fused silica or BK7 glass. The calculated results are in good agreement with the measurements, given the approximations in the analysis and the expected variation in the absorption coefficients of the glasses used in the experiments.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription