Abstract

We propose a new electrode design for polarization-independent cylindrical lens using a polymer-stabilized blue phase liquid crystal (BPLC). The top electrode is coated with a transparent and resistive film to generate linearly varying electric potential from center to edge; while the bottom iridium tin oxide electrode has a constant potential. Therefore, the vertical electric field across the BPLC layer varies linearly over the lens aperture and a desired parabolic phase profile is obtained automatically according to the Kerr effect. Simulation results show that this simple device is polarization independent and it has parabolic-like phase profile in a large tuning range.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
    [CrossRef]
  2. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell,” Appl. Opt. 23, 278–289 (1984).
    [CrossRef]
  3. N. A. Riza and M. C. DeJule, “Three-terminal adaptive nematic liquid crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
    [CrossRef]
  4. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
  5. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
    [CrossRef]
  6. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1, 151–156 (2005).
    [CrossRef]
  7. H. Ren, D. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
    [CrossRef]
  8. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
    [CrossRef]
  9. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43, 652–653 (2004).
    [CrossRef]
  10. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
    [CrossRef]
  11. Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multielectrode driving liquid crystal (MeD-LC) lens,” Soc. Inf. Display Tech. Digest 40, 336–339 (2009).
    [CrossRef]
  12. Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18, 18506–18518 (2010).
    [CrossRef]
  13. A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999).
    [CrossRef]
  14. N. Fraval and J. L. B. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths,” Appl. Opt. 49, 2778–2783 (2010).
    [CrossRef]
  15. H. Kikuchi, M. Yokota, Y. Hiskado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
    [CrossRef]
  16. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311 (2005).
    [CrossRef]
  17. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
    [CrossRef]
  18. Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol. 5, 250–256 (2009).
    [CrossRef]
  19. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
    [CrossRef]
  20. Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
    [CrossRef]
  21. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36, 1404–1406 (2011).
    [CrossRef]
  22. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6, 49–51 (2010).
    [CrossRef]
  23. Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
    [CrossRef]
  24. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
    [CrossRef]
  25. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19, 8045–8050 (2011).
    [CrossRef]
  26. C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization-independent multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19, 17402–17407 (2011).
    [CrossRef]
  27. A. F. Naumov and G. Vdovin, “Multichannel liquid-crystal-based wave-front corrector with modal influence functions,” Opt. Lett. 23, 1550–1552 (1998).
    [CrossRef]
  28. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
    [CrossRef]
  29. J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 50, 337–348 (1875).
  30. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
    [CrossRef]
  31. H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
    [CrossRef]
  32. M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E 83, 041706 (2011).
    [CrossRef]

2011 (7)

Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
[CrossRef]

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E 83, 041706 (2011).
[CrossRef]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36, 1404–1406 (2011).
[CrossRef]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19, 8045–8050 (2011).
[CrossRef]

C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization-independent multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19, 17402–17407 (2011).
[CrossRef]

2010 (5)

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6, 49–51 (2010).
[CrossRef]

N. Fraval and J. L. B. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths,” Appl. Opt. 49, 2778–2783 (2010).
[CrossRef]

Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18, 18506–18518 (2010).
[CrossRef]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

2009 (4)

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multielectrode driving liquid crystal (MeD-LC) lens,” Soc. Inf. Display Tech. Digest 40, 336–339 (2009).
[CrossRef]

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol. 5, 250–256 (2009).
[CrossRef]

2007 (1)

2006 (1)

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
[CrossRef]

2005 (2)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311 (2005).
[CrossRef]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1, 151–156 (2005).
[CrossRef]

2004 (2)

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43, 652–653 (2004).
[CrossRef]

2003 (1)

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).

2002 (2)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hiskado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

1999 (1)

1998 (2)

1994 (1)

1984 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

1875 (1)

J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 50, 337–348 (1875).

Chao, P. C. P.

Chen, C. W.

Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multielectrode driving liquid crystal (MeD-LC) lens,” Soc. Inf. Display Tech. Digest 40, 336–339 (2009).
[CrossRef]

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Chen, K. M.

Chen, Y.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
[CrossRef]

Cheng, H. C.

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Cheng, K. L.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
[CrossRef]

Cleverly, D. S.

de la Tocnaye, J. L. B.

DeJule, M. C.

Fan, Y. H.

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1, 151–156 (2005).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43, 652–653 (2004).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).

Fox, D.

Fraval, N.

Gauza, S.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6, 49–51 (2010).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol. 5, 250–256 (2009).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43, 652–653 (2004).
[CrossRef]

Ge, Z.

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol. 5, 250–256 (2009).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

Guralnik, I. R.

Haseba, Y.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311 (2005).
[CrossRef]

Hiskado, Y.

H. Kikuchi, M. Yokota, Y. Hiskado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Hsieh, P. J.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
[CrossRef]

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Hsueh, C. W.

Huang, Y. P.

Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multielectrode driving liquid crystal (MeD-LC) lens,” Soc. Inf. Display Tech. Digest 40, 336–339 (2009).
[CrossRef]

Ishinabe, T.

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

Jiao, M.

M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E 83, 041706 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

Kajiyama, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hiskado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Kao, Y. Y.

Kerr, J.

J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 50, 337–348 (1875).

Kikuchi, H.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hiskado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Kornreich, P. G.

Kowel, S. T.

Lee, C. T.

Lee, S. H.

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Li, Y.

Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
[CrossRef]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36, 1404–1406 (2011).
[CrossRef]

C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization-independent multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19, 17402–17407 (2011).
[CrossRef]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19, 8045–8050 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Liang, X.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1, 151–156 (2005).
[CrossRef]

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Lin, H. Y.

Lin, Y. H.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Liu, S. H.

Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
[CrossRef]

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Loktev, M. Yu.

Love, G. D.

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311 (2005).
[CrossRef]

Naumov, A. F.

Rao, L.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol. 5, 250–256 (2009).
[CrossRef]

Ren, H.

H. Ren, D. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
[CrossRef]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1, 151–156 (2005).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43, 652–653 (2004).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).

Riza, N. A.

Sato, S.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Shen, T. C.

Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multielectrode driving liquid crystal (MeD-LC) lens,” Soc. Inf. Display Tech. Digest 40, 336–339 (2009).
[CrossRef]

Shiu, J. W.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
[CrossRef]

Sun, J.

Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
[CrossRef]

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Vdovin, G.

Vladimirov, F. L.

Wang, B.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
[CrossRef]

Wang, H.

Wu, B.

Wu, S. T.

Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
[CrossRef]

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36, 1404–1406 (2011).
[CrossRef]

M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E 83, 041706 (2011).
[CrossRef]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19, 8045–8050 (2011).
[CrossRef]

C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization-independent multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19, 17402–17407 (2011).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6, 49–51 (2010).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol. 5, 250–256 (2009).
[CrossRef]

H. Ren, D. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
[CrossRef]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1, 151–156 (2005).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43, 652–653 (2004).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).

Xianyu, H.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6, 49–51 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

Yan, J.

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36, 1404–1406 (2011).
[CrossRef]

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E 83, 041706 (2011).
[CrossRef]

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hiskado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Ye, M.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hiskado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Adv. Mater. (1)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (9)

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

Y. Li, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “Dielectric dispersion on the Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett. 99, 181126 (2011).
[CrossRef]

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue-phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
[CrossRef]

J. Display Technol. (3)

Jpn. J. Appl. Phys. (3)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43, 652–653 (2004).
[CrossRef]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hiskado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Philos. Mag. (1)

J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 50, 337–348 (1875).

Phys. Rev. E (1)

M. Jiao, J. Yan, and S. T. Wu, “Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal,” Phys. Rev. E 83, 041706 (2011).
[CrossRef]

Soc. Inf. Display Tech. Digest (1)

Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multielectrode driving liquid crystal (MeD-LC) lens,” Soc. Inf. Display Tech. Digest 40, 336–339 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Side view of the proposed cylindrical BPLC lens.

Fig. 2.
Fig. 2.

Simulated phase profiles (λ=550nm) across the lens for wave 1 (solid lines) and wave 2 (dotted curves) at Vo=50Vrms. The upper curve is for d=25μm lens and the lower one is for d=8μm.

Fig. 3.
Fig. 3.

Simulated phase profiles (λ=550nm) across the lens with a 13 μm cell gap at 30Vrms and 50Vrms. Black solid curves are for wave 1, red dotted curves are for wave 2, and blue dashed curves are ideal parabolic curves.

Fig. 4.
Fig. 4.

Electric field distribution across the BPLC cylindrical lens with 13 μm cell gap at 50Vrms, (a) for Ex and (b) for Ez.

Fig. 5.
Fig. 5.

Simulated voltage dependent focal length of the proposed BPLC lens: black solid curve is for wave 1 and red dashed curve is for wave 2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2V=ρRωεjdRdLCV+ρRωεdRdLCV,
V=a[exp(cexp((π4θ2)j)x)exp(cexp((π4θ2)j)x)],
|V|2ac|x|,
|V|=|x|RV0.
Δnind=λKE2,
Δnind=λKE2=λKV2dLC2=λKVo2dLC2R2x2.
Δnind=Δns[1exp((E/Es)2],
f=R2/2δn(E)dLC,

Metrics