Abstract

Based on a high-speed polarization optical domain reflectometry, an innovative method to measure the second-order birefringence vector distribution along optical fibers was proposed and implemented in this paper. Some interesting data were obtained along a 1 km long single mode fiber by only one detection. The second-order birefringence magnitude distribution curve can reflect both magnitude and direction change information of the first-order birefringence, and it was more stable (except the catastrophe points) than that of the first-order. The larger variable range of the second-order birefringence magnitude may provide a higher sensitivity than the first-order for birefringence-based distributed sensors.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galtarossa and L. Palmieri, “Spatially resolved PMD measurements,” J. Lightwave Technol. 22, 1103–1115 (2004).
    [CrossRef]
  2. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20, 1060–1074 (1981).
    [CrossRef]
  3. S. S. Yang, C. Q. Wu, and Z. Y. Li, “Demonstration of piezoelectric-polarization-controller-assisted P-OTDR,” in Proceedings of Conference on Optical Fiber Communication 2009 (IEEE, 2009), paper JWA79.
  4. Z. Y. Li, C. Q. Wu, H. Dong, P. Shum, C. Y. Tian, and S. Zhao, “Stress distribution and induced birefringence analysis for pressure vector sensing based on single mode fibers,” Opt. Express 16, 3955–3960 (2008).
    [CrossRef]
  5. S. Y. Huang and Z. Q. Lin, “Measuring the birefringence of single-mode fibers with short beat length or nonuniformity: a new method,” Appl. Opt. 24, 2355–2361 (1985).
    [CrossRef]
  6. T. Chartier, A. Hideur, C. Özkul, F. Sanchez, and G. M. Stéphan, “Measurement of the elliptical birefringence of single-mode optical fibers,” Appl. Opt. 40, 5343–5353(2001).
    [CrossRef]
  7. J. N. Ross, “Birefringence measurement in optical fibers by polarization optical time-domain reflectometry,” Appl. Opt. 21, 3489–3495 (1982).
    [CrossRef]
  8. J. G. Ellison and A. S. Siddiqui, “Using polarimetric optical time domain reflectometry to extract spun fiber parameters,” IEE Proc. Optoelectron. 148, 176–182 (2001).
    [CrossRef]
  9. M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photon. Technol. Lett. 13, 836–838 (2001).
    [CrossRef]
  10. S. S. Yang, C. Q. Wu, Z. Y. Li, R. Y. Zhang, and Q. W. Meng, “Distributed measurement of birefringence by P-OTDR assisted with piezoelectric polarization controller,” Chin. Phys. Lett. 25, 3304–3306 (2008).
    [CrossRef]
  11. H. K. Teng, C. Chou, C. N. Chang, and H. T. Wu, “Application of phase-to-amplitude conversion technique to linear birefringence measurements,” Appl. Opt. 42, 1798–1804 (2003).
    [CrossRef]
  12. C. Q. Wu, Optical Waveguide Theory (Tsinghua University, 2005) [in Chinese].

2008

S. S. Yang, C. Q. Wu, Z. Y. Li, R. Y. Zhang, and Q. W. Meng, “Distributed measurement of birefringence by P-OTDR assisted with piezoelectric polarization controller,” Chin. Phys. Lett. 25, 3304–3306 (2008).
[CrossRef]

Z. Y. Li, C. Q. Wu, H. Dong, P. Shum, C. Y. Tian, and S. Zhao, “Stress distribution and induced birefringence analysis for pressure vector sensing based on single mode fibers,” Opt. Express 16, 3955–3960 (2008).
[CrossRef]

2004

2003

2001

T. Chartier, A. Hideur, C. Özkul, F. Sanchez, and G. M. Stéphan, “Measurement of the elliptical birefringence of single-mode optical fibers,” Appl. Opt. 40, 5343–5353(2001).
[CrossRef]

J. G. Ellison and A. S. Siddiqui, “Using polarimetric optical time domain reflectometry to extract spun fiber parameters,” IEE Proc. Optoelectron. 148, 176–182 (2001).
[CrossRef]

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photon. Technol. Lett. 13, 836–838 (2001).
[CrossRef]

1985

1982

1981

Blondel, M.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photon. Technol. Lett. 13, 836–838 (2001).
[CrossRef]

Chang, C. N.

Chartier, T.

Chou, C.

Defosse, Y.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photon. Technol. Lett. 13, 836–838 (2001).
[CrossRef]

Dong, H.

Ellison, J. G.

J. G. Ellison and A. S. Siddiqui, “Using polarimetric optical time domain reflectometry to extract spun fiber parameters,” IEE Proc. Optoelectron. 148, 176–182 (2001).
[CrossRef]

Galtarossa, A.

Hideur, A.

Huang, S. Y.

Li, Z. Y.

Z. Y. Li, C. Q. Wu, H. Dong, P. Shum, C. Y. Tian, and S. Zhao, “Stress distribution and induced birefringence analysis for pressure vector sensing based on single mode fibers,” Opt. Express 16, 3955–3960 (2008).
[CrossRef]

S. S. Yang, C. Q. Wu, Z. Y. Li, R. Y. Zhang, and Q. W. Meng, “Distributed measurement of birefringence by P-OTDR assisted with piezoelectric polarization controller,” Chin. Phys. Lett. 25, 3304–3306 (2008).
[CrossRef]

S. S. Yang, C. Q. Wu, and Z. Y. Li, “Demonstration of piezoelectric-polarization-controller-assisted P-OTDR,” in Proceedings of Conference on Optical Fiber Communication 2009 (IEEE, 2009), paper JWA79.

Lin, Z. Q.

Mégret, P.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photon. Technol. Lett. 13, 836–838 (2001).
[CrossRef]

Meng, Q. W.

S. S. Yang, C. Q. Wu, Z. Y. Li, R. Y. Zhang, and Q. W. Meng, “Distributed measurement of birefringence by P-OTDR assisted with piezoelectric polarization controller,” Chin. Phys. Lett. 25, 3304–3306 (2008).
[CrossRef]

Özkul, C.

Palmieri, L.

Rogers, A. J.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photon. Technol. Lett. 13, 836–838 (2001).
[CrossRef]

A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20, 1060–1074 (1981).
[CrossRef]

Ross, J. N.

Sanchez, F.

Shum, P.

Siddiqui, A. S.

J. G. Ellison and A. S. Siddiqui, “Using polarimetric optical time domain reflectometry to extract spun fiber parameters,” IEE Proc. Optoelectron. 148, 176–182 (2001).
[CrossRef]

Stéphan, G. M.

Teng, H. K.

Tian, C. Y.

Wu, C. Q.

Z. Y. Li, C. Q. Wu, H. Dong, P. Shum, C. Y. Tian, and S. Zhao, “Stress distribution and induced birefringence analysis for pressure vector sensing based on single mode fibers,” Opt. Express 16, 3955–3960 (2008).
[CrossRef]

S. S. Yang, C. Q. Wu, Z. Y. Li, R. Y. Zhang, and Q. W. Meng, “Distributed measurement of birefringence by P-OTDR assisted with piezoelectric polarization controller,” Chin. Phys. Lett. 25, 3304–3306 (2008).
[CrossRef]

S. S. Yang, C. Q. Wu, and Z. Y. Li, “Demonstration of piezoelectric-polarization-controller-assisted P-OTDR,” in Proceedings of Conference on Optical Fiber Communication 2009 (IEEE, 2009), paper JWA79.

C. Q. Wu, Optical Waveguide Theory (Tsinghua University, 2005) [in Chinese].

Wu, H. T.

Wuilpart, M.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photon. Technol. Lett. 13, 836–838 (2001).
[CrossRef]

Yang, S. S.

S. S. Yang, C. Q. Wu, Z. Y. Li, R. Y. Zhang, and Q. W. Meng, “Distributed measurement of birefringence by P-OTDR assisted with piezoelectric polarization controller,” Chin. Phys. Lett. 25, 3304–3306 (2008).
[CrossRef]

S. S. Yang, C. Q. Wu, and Z. Y. Li, “Demonstration of piezoelectric-polarization-controller-assisted P-OTDR,” in Proceedings of Conference on Optical Fiber Communication 2009 (IEEE, 2009), paper JWA79.

Zhang, R. Y.

S. S. Yang, C. Q. Wu, Z. Y. Li, R. Y. Zhang, and Q. W. Meng, “Distributed measurement of birefringence by P-OTDR assisted with piezoelectric polarization controller,” Chin. Phys. Lett. 25, 3304–3306 (2008).
[CrossRef]

Zhao, S.

Appl. Opt.

Chin. Phys. Lett.

S. S. Yang, C. Q. Wu, Z. Y. Li, R. Y. Zhang, and Q. W. Meng, “Distributed measurement of birefringence by P-OTDR assisted with piezoelectric polarization controller,” Chin. Phys. Lett. 25, 3304–3306 (2008).
[CrossRef]

IEE Proc. Optoelectron.

J. G. Ellison and A. S. Siddiqui, “Using polarimetric optical time domain reflectometry to extract spun fiber parameters,” IEE Proc. Optoelectron. 148, 176–182 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Wuilpart, P. Mégret, M. Blondel, A. J. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photon. Technol. Lett. 13, 836–838 (2001).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

C. Q. Wu, Optical Waveguide Theory (Tsinghua University, 2005) [in Chinese].

S. S. Yang, C. Q. Wu, and Z. Y. Li, “Demonstration of piezoelectric-polarization-controller-assisted P-OTDR,” in Proceedings of Conference on Optical Fiber Communication 2009 (IEEE, 2009), paper JWA79.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Geometric definition of the second-order birefringence vector.

Fig. 2.
Fig. 2.

Measurement system of the second-order local birefringence vector distribution.

Fig. 3.
Fig. 3.

P-OTDR traces of the backward beam’s three stokes parameters.

Fig. 4.
Fig. 4.

Spatial distribution of the first-order local birefringence magnitude along a 1 km SMF and a close-up.

Fig. 5.
Fig. 5.

Direction distribution of the first-order local birefringence vectors in a 1 km SMF.

Fig. 6.
Fig. 6.

Direction distribution of the first-order local birefringence vectors in a 50 m part of the SMF.

Fig. 7.
Fig. 7.

Spatial distribution of the second-order local birefringence magnitude along a 1 km SMF and a close-up.

Fig. 8.
Fig. 8.

Direction distribution of the second-order local birefringence vectors in a 1 km SMF.

Fig. 9.
Fig. 9.

Direction distribution of the second-order local birefringence vectors in a 50 m part of the SMF.

Fig. 10.
Fig. 10.

Optimized histogram of the second-order local birefringence magnitudes in a 1 km ideal SMF and the distribution fitting.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S⃗(z+Δz)=β⃗(β⃗·S⃗)+[S⃗β⃗(β⃗·S⃗)]cos(βΔz)+β⃗×S⃗sin(βΔz).
S⃗p1=[Sx1Sy1Sz1],S⃗P2=[Sx2Sy2Sz2],S⃗p3=[Sx3Sy3Sz3],
{x2+y2+z2=1Δx(xSx1)Δy(ySy1)+Δz(zSz1)=0,
{Δx=(Sy2Sy1)(Sz3Sz1)(Sy3Sy1)(Sz2Sz1)Δy=(Sx2Sx1)(Sz3Sz1)(Sx3Sx1)(Sz2Sz1)Δz=(Sx2Sx1)(Sy3Sy1)(Sx3Sx1)(Sy2Sy1).
{x0=Δx(ΔxSx1ΔySy1+ΔzSz1)/(Δx2+Δy2+Δz2)y0=Δy(ΔxSx1ΔySy1+ΔzSz1)/(Δx2+Δy2+Δz2)z0=Δz(ΔxSx1ΔySy1+ΔzSz1)/(Δx2+Δy2+Δz2).
β=θ/Δz=2arcsin(l/2ρ)/Δz.
β⃗2=β(z+Δz)β(z)Δz.

Metrics