Abstract

To explore and reduce the nonlinear error and temperature dependency of fiber-optic gyroscope (FOG) scale factor, a scale factor modeling method based on temperature is presented in this paper. A hyperbolic curve fitting is proposed according to the characteristic of scale factor under stable temperature at first. Compared to traditional modeling methods, it shows that a higher precision model of scale factor can be obtained. Then the influence of temperature on scale factor is analyzed and then the hyperbolic curve fitting method is extended based on temperature, making it possible to work over the whole potential temperature range of the FOG without degrading the performance. This paper also provides the experimental and verification results. It can be seen that a high precision model of scale factor has been established, the temperature dependency of scale factor has been reduced effectively, and the error due to environment temperature is reduced by one order at least.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription