Abstract

An integrated fiber-optic sensor is described that uses incoherent broadband cavity enhanced absorption spectroscopy for sensitive detection of aqueous samples in nanoliter volumes. Absorption was measured in a 100 µm gap between the ends of two short segments of multimode graded-index fiber that were integrated into a capillary using a precision machined V-grooved fixture that allowed for passive fiber alignment. The other ends of the fibers were coated with dielectric mirrors to form a 9.5 cm optical resonator. Light from a fiber-coupled superluminescent diode was directly coupled into one end of the cavity, and transmission was measured using a fiber-coupled silicon photodiode. Dilute aqueous solutions of near infrared dye were used to determine the minimum detectable absorption change of 2.4×104 under experimental conditions in which pressure fluctuations limited performance. We also determined that the absolute minimum detectable absorption change would be 1.6×105 for conditions of constant pressure in which absorption measurement is limited by electronic and optical noise. Tolerance requirements for alignment are also presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Li, H. P. Loock, and R. D. Oleschuk, “Capillary electrophoresis absorption detection using fiber-loop ring-down spectroscopy,” Anal. Chem. 78, 5685–5692 (2006).
    [CrossRef]
  2. Z. G. Tong, M. Jakubinek, A. Wright, A. Gillies, and H. P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (2003).
    [CrossRef]
  3. H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy,” Anal. Chem. 83, 2719–2725 (2011).
    [CrossRef]
  4. T. von Lerber and M. W. Sigrist, “Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41, 3567–3575 (2002).
    [CrossRef]
  5. M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, and H. P. Loock, “Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser,” Appl. Phys. B 88, 131–135 (2007).
    [CrossRef]
  6. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  7. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
    [CrossRef]
  8. D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758–6763 (2006).
    [CrossRef]
  9. T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890–895 (2008).
    [CrossRef]
  10. T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
    [CrossRef]
  11. S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471–4477 (2008).
    [CrossRef]
  12. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
    [CrossRef]
  13. L. N. Seetohul, Z. Ali, and M. Islam, “Broadband cavity enhanced absorption spectroscopy as a detector for HPLC,” Anal. Chem. 81, 4106–4112 (2009).
    [CrossRef]
  14. A. L. Gomez, J. A. Fruetel, and R. P. Bambha, “High-sensitivity near-IR absorption measurements of nanoliter samples in a cavity enhanced fiber sensor,” Proc. SPIE 7397, 739706 (2009).
    [CrossRef]
  15. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190–2.50 µm,” Biopolymers 72, 391–398 (2003).
    [CrossRef]
  16. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130–2.50 µm spectral region,” Biopolymers 62, 122–128 (2001).
    [CrossRef]
  17. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm,” Appl. Opt. 36, 2818–2824 (1997).
    [CrossRef]
  18. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 µm,” Biospectroscopy 3, 73–80 (1997).
    [CrossRef]
  19. P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004).
    [CrossRef]
  20. Epolin, Inc., 358-364 Adams Street, Newark, NJ 07105, USA (personal communication, 2009).
  21. Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
    [CrossRef]
  22. H. P. Loock, “Ring-down absorption spectroscopy for analytical microdevices,” Trends Anal. Chem. 25, 655–664 (2006).
    [CrossRef]

2011 (1)

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy,” Anal. Chem. 83, 2719–2725 (2011).
[CrossRef]

2009 (3)

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

L. N. Seetohul, Z. Ali, and M. Islam, “Broadband cavity enhanced absorption spectroscopy as a detector for HPLC,” Anal. Chem. 81, 4106–4112 (2009).
[CrossRef]

A. L. Gomez, J. A. Fruetel, and R. P. Bambha, “High-sensitivity near-IR absorption measurements of nanoliter samples in a cavity enhanced fiber sensor,” Proc. SPIE 7397, 739706 (2009).
[CrossRef]

2008 (2)

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471–4477 (2008).
[CrossRef]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890–895 (2008).
[CrossRef]

2007 (1)

M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, and H. P. Loock, “Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser,” Appl. Phys. B 88, 131–135 (2007).
[CrossRef]

2006 (3)

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758–6763 (2006).
[CrossRef]

R. K. Li, H. P. Loock, and R. D. Oleschuk, “Capillary electrophoresis absorption detection using fiber-loop ring-down spectroscopy,” Anal. Chem. 78, 5685–5692 (2006).
[CrossRef]

H. P. Loock, “Ring-down absorption spectroscopy for analytical microdevices,” Trends Anal. Chem. 25, 655–664 (2006).
[CrossRef]

2005 (1)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[CrossRef]

2004 (2)

P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004).
[CrossRef]

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef]

2003 (2)

Z. G. Tong, M. Jakubinek, A. Wright, A. Gillies, and H. P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (2003).
[CrossRef]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190–2.50 µm,” Biopolymers 72, 391–398 (2003).
[CrossRef]

2002 (1)

2001 (1)

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130–2.50 µm spectral region,” Biopolymers 62, 122–128 (2001).
[CrossRef]

1998 (1)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

1997 (2)

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 µm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm,” Appl. Opt. 36, 2818–2824 (1997).
[CrossRef]

1995 (1)

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Ali, Z.

L. N. Seetohul, Z. Ali, and M. Islam, “Broadband cavity enhanced absorption spectroscopy as a detector for HPLC,” Anal. Chem. 81, 4106–4112 (2009).
[CrossRef]

Andachi, M.

M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, and H. P. Loock, “Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser,” Appl. Phys. B 88, 131–135 (2007).
[CrossRef]

Arakawa, E. T.

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190–2.50 µm,” Biopolymers 72, 391–398 (2003).
[CrossRef]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130–2.50 µm spectral region,” Biopolymers 62, 122–128 (2001).
[CrossRef]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm,” Appl. Opt. 36, 2818–2824 (1997).
[CrossRef]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 µm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

Bambha, R. P.

A. L. Gomez, J. A. Fruetel, and R. P. Bambha, “High-sensitivity near-IR absorption measurements of nanoliter samples in a cavity enhanced fiber sensor,” Proc. SPIE 7397, 739706 (2009).
[CrossRef]

Berden, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

Chanclou, P.

P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004).
[CrossRef]

Chen, W.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

Engeln, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

Fiedler, S. E.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[CrossRef]

Fruetel, J. A.

A. L. Gomez, J. A. Fruetel, and R. P. Bambha, “High-sensitivity near-IR absorption measurements of nanoliter samples in a cavity enhanced fiber sensor,” Proc. SPIE 7397, 739706 (2009).
[CrossRef]

Gao, X.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

Gherman, T.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471–4477 (2008).
[CrossRef]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890–895 (2008).
[CrossRef]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758–6763 (2006).
[CrossRef]

Gillies, A.

Z. G. Tong, M. Jakubinek, A. Wright, A. Gillies, and H. P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (2003).
[CrossRef]

Gomez, A. L.

A. L. Gomez, J. A. Fruetel, and R. P. Bambha, “High-sensitivity near-IR absorption measurements of nanoliter samples in a cavity enhanced fiber sensor,” Proc. SPIE 7397, 739706 (2009).
[CrossRef]

Gravey, P.

P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004).
[CrossRef]

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[CrossRef]

Islam, M.

L. N. Seetohul, Z. Ali, and M. Islam, “Broadband cavity enhanced absorption spectroscopy as a detector for HPLC,” Anal. Chem. 81, 4106–4112 (2009).
[CrossRef]

Jakubinek, M.

Z. G. Tong, M. Jakubinek, A. Wright, A. Gillies, and H. P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (2003).
[CrossRef]

Jang, A.

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy,” Anal. Chem. 83, 2719–2725 (2011).
[CrossRef]

Kaczmarek, C.

P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004).
[CrossRef]

Kawasaki, M.

M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, and H. P. Loock, “Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser,” Appl. Phys. B 88, 131–135 (2007).
[CrossRef]

Khare, B. N.

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190–2.50 µm,” Biopolymers 72, 391–398 (2003).
[CrossRef]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130–2.50 µm spectral region,” Biopolymers 62, 122–128 (2001).
[CrossRef]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm,” Appl. Opt. 36, 2818–2824 (1997).
[CrossRef]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 µm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

Kurokawa, S.

M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, and H. P. Loock, “Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser,” Appl. Phys. B 88, 131–135 (2007).
[CrossRef]

Lecollinet, M. A.

P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004).
[CrossRef]

Li, R.

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef]

Li, R. K.

R. K. Li, H. P. Loock, and R. D. Oleschuk, “Capillary electrophoresis absorption detection using fiber-loop ring-down spectroscopy,” Anal. Chem. 78, 5685–5692 (2006).
[CrossRef]

Loock, H. P.

M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, and H. P. Loock, “Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser,” Appl. Phys. B 88, 131–135 (2007).
[CrossRef]

R. K. Li, H. P. Loock, and R. D. Oleschuk, “Capillary electrophoresis absorption detection using fiber-loop ring-down spectroscopy,” Anal. Chem. 78, 5685–5692 (2006).
[CrossRef]

H. P. Loock, “Ring-down absorption spectroscopy for analytical microdevices,” Trends Anal. Chem. 25, 655–664 (2006).
[CrossRef]

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef]

Z. G. Tong, M. Jakubinek, A. Wright, A. Gillies, and H. P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (2003).
[CrossRef]

Loock, H.-P.

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy,” Anal. Chem. 83, 2719–2725 (2011).
[CrossRef]

McCormick, T.

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef]

Meijer, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

Milham, M. E.

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190–2.50 µm,” Biopolymers 72, 391–398 (2003).
[CrossRef]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130–2.50 µm spectral region,” Biopolymers 62, 122–128 (2001).
[CrossRef]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm,” Appl. Opt. 36, 2818–2824 (1997).
[CrossRef]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 µm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

Mouzer, G.

P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004).
[CrossRef]

Munzke, D.

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy,” Anal. Chem. 83, 2719–2725 (2011).
[CrossRef]

Nakayama, T.

M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, and H. P. Loock, “Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser,” Appl. Phys. B 88, 131–135 (2007).
[CrossRef]

Oleschuk, R. D.

R. K. Li, H. P. Loock, and R. D. Oleschuk, “Capillary electrophoresis absorption detection using fiber-loop ring-down spectroscopy,” Anal. Chem. 78, 5685–5692 (2006).
[CrossRef]

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef]

Orphal, J.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471–4477 (2008).
[CrossRef]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890–895 (2008).
[CrossRef]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758–6763 (2006).
[CrossRef]

Peeters, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

Querry, M. R.

Rochard, P.

P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004).
[CrossRef]

Ruth, A. A.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471–4477 (2008).
[CrossRef]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890–895 (2008).
[CrossRef]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758–6763 (2006).
[CrossRef]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[CrossRef]

Seetohul, L. N.

L. N. Seetohul, Z. Ali, and M. Islam, “Broadband cavity enhanced absorption spectroscopy as a detector for HPLC,” Anal. Chem. 81, 4106–4112 (2009).
[CrossRef]

Sigrist, M. W.

Thual, M.

P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004).
[CrossRef]

Tong, Z.

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef]

Tong, Z. G.

Z. G. Tong, M. Jakubinek, A. Wright, A. Gillies, and H. P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (2003).
[CrossRef]

Tuminello, P. S.

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190–2.50 µm,” Biopolymers 72, 391–398 (2003).
[CrossRef]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130–2.50 µm spectral region,” Biopolymers 62, 122–128 (2001).
[CrossRef]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm,” Appl. Opt. 36, 2818–2824 (1997).
[CrossRef]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 µm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

Vaughan, S.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471–4477 (2008).
[CrossRef]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890–895 (2008).
[CrossRef]

Venables, D. S.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890–895 (2008).
[CrossRef]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758–6763 (2006).
[CrossRef]

von Lerber, T.

Waechter, H.

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy,” Anal. Chem. 83, 2719–2725 (2011).
[CrossRef]

Wenger, J. C.

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758–6763 (2006).
[CrossRef]

Wright, A.

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef]

Z. G. Tong, M. Jakubinek, A. Wright, A. Gillies, and H. P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (2003).
[CrossRef]

Wrobel, J. M.

Wu, T.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

Zalicki, P.

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zhang, W.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

Zhao, W.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

Anal. Chem. (4)

L. N. Seetohul, Z. Ali, and M. Islam, “Broadband cavity enhanced absorption spectroscopy as a detector for HPLC,” Anal. Chem. 81, 4106–4112 (2009).
[CrossRef]

R. K. Li, H. P. Loock, and R. D. Oleschuk, “Capillary electrophoresis absorption detection using fiber-loop ring-down spectroscopy,” Anal. Chem. 78, 5685–5692 (2006).
[CrossRef]

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy,” Anal. Chem. 83, 2719–2725 (2011).
[CrossRef]

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, and H. P. Loock, “Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser,” Appl. Phys. B 88, 131–135 (2007).
[CrossRef]

Biopolymers (2)

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190–2.50 µm,” Biopolymers 72, 391–398 (2003).
[CrossRef]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130–2.50 µm spectral region,” Biopolymers 62, 122–128 (2001).
[CrossRef]

Biospectroscopy (1)

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 µm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

Environ. Sci. Technol. (2)

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758–6763 (2006).
[CrossRef]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890–895 (2008).
[CrossRef]

J. Chem. Phys. (1)

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Opt. Eng. (1)

P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471–4477 (2008).
[CrossRef]

Proc. SPIE (1)

A. L. Gomez, J. A. Fruetel, and R. P. Bambha, “High-sensitivity near-IR absorption measurements of nanoliter samples in a cavity enhanced fiber sensor,” Proc. SPIE 7397, 739706 (2009).
[CrossRef]

Rev. Sci. Instrum. (3)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998).
[CrossRef]

Z. G. Tong, M. Jakubinek, A. Wright, A. Gillies, and H. P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (2003).
[CrossRef]

Trends Anal. Chem. (1)

H. P. Loock, “Ring-down absorption spectroscopy for analytical microdevices,” Trends Anal. Chem. 25, 655–664 (2006).
[CrossRef]

Other (1)

Epolin, Inc., 358-364 Adams Street, Newark, NJ 07105, USA (personal communication, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

3D rendering showing the (top) configuration of the capillary. (a) PEEK tubing. (b) Optical fiber. (c) Resting in a V-groove and (bottom) cross-sectional views of the mating of the capillary fluid channel. (d) In the PEEK tubing and the optical fiber.

Fig. 2.
Fig. 2.

Viewing down the PEEK tubing to show the fiber gap prior to capillary installation. UV epoxy has been externally wicked and cured to set the left optical fiber.

Fig. 3.
Fig. 3.

Assembled integrated IBB-CEAS detector in mounting block. (a) Capillary. (b) PEEK tubing. (c) Optical fiber in V-groove. (d) Brass support collar. (e) Input and output fibers encapsulated to mirrored GRIN fibers with optical epoxy.

Fig. 4.
Fig. 4.

Measurement of a pressure driven flow of alternating dilute solution of Epolight 2717 dye and water through the detection gap.

Fig. 5.
Fig. 5.

(A) Drift-corrected background signal of water in the detection gap used for theoretical LOD calculation. (B) Electronic noise of the current-amplified Si photodiode with no signal.

Fig. 6.
Fig. 6.

Transmission loss measurements over 3 orders of magnitude of dye concentrations. Equivalent concentrations of Ovalbumin are included for reference. The solid line represents the LOD for a signal-to-noise ratio of three.

Fig. 7.
Fig. 7.

Experimental enhancement factors for the integrated (this work) and discrete component (prior work [14]) IBB-CEAS detector as a function of transmission.

Fig. 8.
Fig. 8.

IBB-CEAS measurements of dilute solutions of 2 µm glass (top) and polystyrene (bottom) spheres gravity fed through the detection region.

Fig. 9.
Fig. 9.

Mode patterns through unmirrored GRIN fibers (left pairs) and mirrored GRIN fiber cavities (right pairs) using both Nufern FUD-3583-SM-GDF-10-125 and Corning HI-1060 single mode input fibers. The input fiber was translationally misaligned perpendicular to the optical axis, away from optimal alignment (0 µm) in 1 µm increments.

Fig. 10.
Fig. 10.

Transmission spectra of 1.055 µm light through mirrored GRIN fiber cavities using both Nufern FUD-3583-SM-GDF-10-125 (left) and Corning HI-1060 (right) single mode input fibers. Laser light was frequency ramped and the output was recorded on an oscilloscope. The input fiber was translationally misaligned perpendicular to the optical axis, away from optimal alignment (0 µm) in 1 µm increments. The FSR separation between transmission peaks is 1GHz.

Tables (1)

Tables Icon

Table 1. Comparison of Various Resonance-Enhanced, Fiber Coupled Systems Used to Measure Aqueous Solutions in the Near-IR

Metrics